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Abstract—Parallelcomputing is one of significant 

components of the High Performance Computing (HPC) 

and is being used to solve problems, which are large and 

complex in nature. Fuzzy Logic System (FLS) is a problem 

that becomes computationally intensive with increase in 

number of inputs and/or fuzzy rules. Running an FLS is 

highly parallel in nature, therefore, can be implemented in 

parallel on GPU using CUDA. In this paper, various fuzzy 

computations viz. rule firing, implication, aggregation and 

defuzzification are performed in parallel. Multiple threads 

are run at a time to fire multiple fuzzy rules, 

simultaneously, that reduces the overall FLS execution 

time. It is observed from simulation results that GPU 

works faster as compared to CPU when either number of 

inputs is increased or number of fuzzy rules. 

Keywords: High Performance Computing, Fuzzy Logic 

Systems, General Purpose Computing on Graphics 

Processing Unit, Compute Unified Design Architecture 

I. INTRODUCTION

Artificial Intelligence (AI) undoubtedly is the 
backbone of the emerging technological advancements, 
however, implementation involves intensive 
computation owing to increased data sizes. Methods to 
improve the runtime performance construe the areas of 
research to reduce mathematical computations and 
parallelization of algorithm in hardware. Graphics 
Processor Units (GPU), plays a major role in gaming 
and graphics applications and allows for general 
purpose programming on remarkably fast parallel 
hardware using a Single Instruction Multiple Data 
(SIMD) programming architecture. Fuzzy Logic, 
introduced by Zadeh [1], [2], is one of the exigent part 
of AI and possess inherent parallel nature. General 
Purpose computing on GPU (GPGPU) is targeted by 
many researchers to speed up complicated algorithms 
especially, AI algorithms and their applications [3]. 
Ander-son et al. presented a GPU solution for the fuzzy 
C-means clustering algorithms [4]. Earlier this solution 
used OpenGL and Cg (graphics libraries) to achieve 
approximately two folds of computational speedup for 
some clustering profiles using NVIDIA 8800 GPU. 
They later generalized the system for the use of non-
Euclidean metrics [5]. Further, Sejun Kim describes the 
method used to adapt a multilayer tree structure 
composed of fuzzy adaptive units into CUDA 
(Compute Unified Device Architecture) platforms [6]. 

In [7], Chiosa and Kolb present a framework for 

mesh clustering solely implemented on the GPU with a 

new generic multilevel clustering technique. Chia  

et al., have proposed the implementation of a zero-order 

TSK-Fuzzy Neural Network (FNN) on GPUs to reduce 

training time in [8]. 

Harvey et al., have presented a GPU solution for 

fuzzy inference system in [9]. Anderson et al., present a 

parallel implementation of fuzzy inference on GPU 

using CUDA in[10]. Two folds of speed improvement 

of this naturally parallel algorithm have been achieved 

under typical inference profiles. One problem with this 

system and the implementation on GPU is that they 

both rely upon OpenGL and Cg libraries, which makes 

system generalization difficult for new comers to 

GPGPU. Further, Ngo et al., report an implementation 

of Interval Type-2 FLS on GPU using CUDA with a 

tremendous speedup of 30 folds in [11]. 

In this paper, parallel functionality with CUDA 

programming model, for parallel implementation of a 

Type-1 Sugeno FLS on GPU, is investigated with 

increased number of inputs and fuzzy rules. After this 

brief historical background rest of this paper is outlined 

as follows: Section II targets CUDA programming 

model for GPGPU. Section III introduces Type 1 FLS 

along with the scope of parallelism wherever possible. 

Section IV presents simulation results and a speedup 

comparison of serial and parallel computing using CPU 

and GPU, respectively. Finally, section V concludes the 

research workand presents future off-shoots. 

II. CUDA PROGRAMMING MODEL

CUDA is a parallel computing platform and 

programming model introduced by NVIDIA that 

increases computing performance substantially by 

harnessing the power of parallelism of the GPU. CUDA 

gives program developers the direct access to the virtual 

instruction set and memory of the parallel 

computational elements in CUDA enabled GPUs. The 

CUDA platform is accessible to software developers 

through CUDA accelerated libraries, compiler 

directives (such as Open ACC), and extensions to 

industry-standard programming languages, including C, 

C++ and FORTRAN. C/C++ programmers use 
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CUDAC/C++, compiled with nvcc which is NVIDIA’S 

LLVM-based C/C++ compiler. A C/C++ program using 

CUDA can interface with one GPU or multiple GPUs 

and can be identified and utilized in parallel, allowing 

for unprecedented processing power on desktop 

computers.  

CUDA allows multiple kernels to be run 

simultaneously on GPU cores. CUDA refers to each 

kernel as a grid. A grid is a collection of blocks. Each 

block runs the same kernel, however, is independent of 

each other (this has significance in terms of access to 

memory types). A block contains threads, which are the 

smallest divisible unit on a GPU. 

A thread block is a number of SIMD threads that 

work on core at a given time. Threads can exchange 

information through the shared memory and can be 

synchronized. The operations are systematized as a grid 

of thread blocks. For parallel operation the programming 

model allows a developer to partition a program into 

several subprograms, each of which is executed 

independently on a block. Each subprogram can be 

further divided into finer pieces that perform the same 

function but execute on different threads independently 

within the same block. For data set parallelism, data sets 

can be divided in to smaller chunks that are stored in the 

shared memory, and each chunk is visible to all threads 

of the same block. This local data arrangement approach 

reduces the need to access off-chip global memory, 

which reduces data access time. 

Fig. 1  CUDA Architecture 

The next critical component of a CUDA application 

is the memory model. There are multiple types of 

memory and each has different access times. The GPU is 

broken up into read-write per thread registers, read-write 

per thread local memory, read-write per-block shared 

memory, read-write per-grid global memory, read-only 

per-grid constant memory, and read-only per-grid 

texture memory. Texture and constant memory have 

relatively small access latency times, while global 

memory has the largest access latency time. 

Applications should minimize the number of global 

memory reads and writes. This is typically achieved by 

having each thread read its data from global memory 

and store its content into shared memory. 

The basic structure of a CUDA code comprises of 

allocation of memory space (using cuda Malloc 

function) on device (GPU) and (using regular malloc 

function) on host (CPU). Data which is copied from the 

host to the device for the call of kernel routine to be 

executed on the GPU (using function cuda Memcpy) 

also defines the number of threads and their physical 

structure. Kernel is prefixed with the global keyword. 

Results are transferred from GPU to CPU in the same 

fashion as data is copied from host to device. 

III. SCOPE OF PARALLELISM IN TYPE-1 FLS 

Theory of FLS given by Zadeh a fuzzy set is 

defined for a particular domain, and it is characterized 

by a membership function that maps elements from the 

domain to a real valued numbers [1], [2]. Mendel and 

many researchers gave numerous methods to design and 

implement FLS for various applications [12]–[15]. 

Theory of FLS given by Zadeh a fuzzy set is defined for 

a particular domain, and it is characterized by a 

membership function that maps elements from the 

domain to a real valued numbers. 

Fig. 2  CUDA Process Flow 

In this paper every input has been fuzzified using 

four arbitrary located Gaussian membership functions 

that are characterized by two parameters, i.e., mean (m)

and standard deviation ( ). Gaussian membership 

function is symmetrical about its mean and is expressed 

mathematically as (1) 
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In this paper, an FLS with 4 inputs and 1 output is 

subjectedto parallel computation for forecasting of 

Mackey-Glass timeseries [14]. For implication and 

aggregation, min and maxoperator are investigated. The 

defuzzification is performedwith the height 

defuzzification method as symmetrical shaped Gaussian 

fuzzy sets have been used to fuzzify consequent.Output 

of the height defuzzifier is given by (2) 
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Here C represents the location of singleton 

consequents fuzzy sets and (xi) represent clipping level 

for each rule after implication and M represents total 

number of fuzzy rules. However, for implementation of 

the FLS defined above in CUDA, the foremost and the 

most crucial step is to allocate the memory space for the 

data sets to be used in the system,as the choice and 

format of data affects performance of thealgorithm. 

Scope of possible parallel computational 

processing is discussed as follows: Harvey et al., [9] 

and Anderson et al., [10] in their respective work have 

given a vast scope of parallelism for Type-1 FLS. In the 

same fashion Ngo et al., [11] presented a novel scope of 

parallelism for Interval Type-2 FLS. However, in all 

these implementations the emphasis was laid to 

parallelize the number of fuzzy rules and discrete levels 

for a typical FLS with two inputs and single output. So, 

a single FLS was computed with parallel rule inference 

on GPU using CUDA. However, a typical FLS can be 

processed multiple times with fixed fuzzy rules and 

discrete levels but varying inputs. Here lies our scope of 

parallelism, we construe our code to compute multiple 

FLS in parallel on GPU as a FLS serially on CPU will 

consume more time. 

IV. PARALLEL I MPLEMENTATION

Two M×N dimensional ‘Mean’ and ‘Sigma’ 

matrices are used in this implementation where M

denotes number of fuzzy rules and N is number of 

antecedents. These matrices hold mean and sigma 

values of Gaussian membership function in accordance 

with fuzzy rules used in the FLS. An M×1 dimensional 

‘Consequent’ matrix contains only mean values of the 

consequent fuzzy sets as systems uses height 

defuzzificationmethod given by equation (2). Multiple 

inputs are provided to the systems collectively in the 

form of an L×N dimensional input matrix, X, where L is 

the number of inputs.The CPU executes rule firing 

sequentially with a single input at a time and causes 

more computational time. Whereas, multiple threads are 

run at the same time to fire multiple rules 

simultaneously using system matrices, i.e., ‘Mean’, 

‘Sigma’ and ‘Consequent’ matrices,which reduce the 

execution time for the FLS. A kernel function is 

initialized from CPU to pass inputs in parallel to 

various GPU cores. Copying system matrices everytime 

along with input vectors and increases the GPU 

processing time. Therefore, system matrices are copied 

only once and subsequently require only input vectors 

those are passed to GPU in parallel to enhance the GPU 

performance. 

V. RESULTS DISCUSSION

The speed up performance with GPU 

implementation of a Type-1 Sugeno FLS was compared 

with that of CPU implementation. Intel Core 2 Duo 

system under experimentation has 2GB of system 

RAM, and Windows 7 platform. The GPU used here 

works on nVIDIAGeforce GTX 650 with 1024 MB of 

texture memory, 192 stream processors, and PCI 

Express X16. 

The number of antecedents is fixed to 4 and 

consequentto 1, the number of rules is varied between 

10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and inputs were 

varied as 128, 256, 512, and 1024. A set of input data is 

obtained from Mackey-Glass time series for 

experimentation. Ratio of CPU to GPU runtimes with 

respect to number of fuzzy rules has been tabulated in 

Table I and presented graphicallyin Fig. 3. 

TABLE I FUZZY RULES VS. CPU TO GPU SPEEDUP RATIO

Number of Fuzzy 

Rules

CPU to GPU Runtime Speedup Ratio

128

Inputs 

256

Inputs 

512

Inputs 

1024

Inputs 

10 1.937 4.875 5.034 5.488 

20 2.437 3.032 4.548 6.132 

30 1.340 2.319 4.319 6.544 

40 2.000 2.476 3.968 7.063 

50 1.516 3.532 4.410 7.063 

60 1.730 3.000 4.365 7.185 

70 1.602 3.205 4.509 7.134 

80 1.500 2.742 4.500 7.832 

90 1.709 2.577 4.446 5.488 

100 1.624 2.504 4.652 6.132 

Here, it can be observed clearly that advantage of 

GPU computing has increased with increased input data 

vector sizes. In another simulation results, it is observed 

that CPU to GPU speedup time improves with increase 

in fuzzy rules. Computational time on CPU varies 

significantly due to already always running applications 

at the back end.Therefore, to present fair comparison 

serial and parallel timing analysis experiments with 

same FLS have been repeated 30 times. Average of 

CPU to GPU speedups for 30 monte-carlosimulations 

during serial and parallel computations of rule firing, 

implication, aggregation and defuzzification have 

beenpresented in Fig. 4–7. 

Fig. 3  CPU to GPU Speedup Ratio vs Inputs Data Length 
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The overall performance of CPU to GPU speedup 

timingswith respect to collective number of inputs, 

presented to the FLS, is shown in Fig. 8 that depicts that 

larger the number offuzzy rules better is the speedup 

performance. 

Fig. 4  CPU and GPU Runtime Comparison for 128 Inputs 

Fig. 5  CPU and GPU Runtime Comparison for 256 Inputs 

VI. CONCLUSION AND FUTURE WORK

This paper has demonstrated the implementation 

and comparative runtime performances of a typical 

Sugeno Type-1 FLSon a GPU and CPU without the use 

of a graphics API which is flexible, scalable, and can be 

used by any researcher with knowledge of C. It has 

been demonstrated that the CPU works equally fast as 

GPU when the system is small. As the number of rules 

or the number of inputs increase the GPU outperforms 

the CPU runtime. Here, in the work nearly 7.83 times 

speedup could be achieved as 1024 inputs supplied in 

parallel to the FLS ported on GPU. The GPU has an 

initial setup overhead of kernel loading and memory 

transfer, however, subsequent parallel computations 

leads to a small increase in processing time despite a 

substantial increase in computational load. On the other 

hand, CPU has no initial cost, but computation time 

grows linearly with computational load much beyond 

GPGPU runtime. 

Fig. 6  CPU and GPU Runtime Comparison for 512 Inputs 

Fig. 7  CPU and GPU Runtime Comparison for 1024 Inputs 

Fig. 8  CPU to GPU Speedup Ratio for Various Input Data Sets 

The parallelization of more FLS applications is 

next on ouragenda. That will follow implementation of 

Interval Type-2 FLSs and Generalized Type-2 FLSs for 

various applications that require much more 

computational time otherwise.GPGPU is also possibly 

investigated to on Evolutionary Algorithms those are 

computational intensive and parallel innature. 

REFERENCES

[1] L.A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8,  

No. 3, pp. 338–353, 1965. 

[2] L.A. Zadeh, “Fuzzy Logic and Approximate Reasoning,” 

Synthese, Vol. 30, pp. 407–428, 1975. 

[3] S. Singh, S. Singh, V.K. Banga, and D. Chauhan, “CUDA for 

GPGPU Applications-A Survey,” in National Conference on 

Contem-poraryTechniques & Technologies in Electronics 

Engineering, Murthal,Sonepat, India, March 2013, p. Accepted. 



Speedup of Type-1 Fuzzy Logic Systems on Graphics Processing Units Using CUDA 

271

[4] D.T. Anderson, R.H. Luke, and J.M. Keller, “Speedup of 

FuzzyClustering through Stream Processing on Graphics 

Processing Units,” IEEE Transactions on Fuzzy Systems,

Vol. 16, No. 4, pp. 1101–1106, 2008. 

[5] D. Anderson, R.H. Luke, and J.M. Keller, “Incorporation of 

non-EuclideanDistance Metrics into Fuzzy Clustering on 

Graphics Processing Units,” in Analysis and Design of 

Intelligent Systems using Soft Computing Techniques. Springer, 

pp. 128–139, 2007. 

[6] S. Kim and D. Wunsch, “A GPU based Parallel Hierarchical 

Fuzzy ART Clustering,” in The 2011 International Joint 

Conference on Neural Networks (IJCNN), pp. 2778–2782, 2011. 

[7] I. Chiosa and A. Kolb, “GPU-based Multilevel Clustering,” 

IEEE Transactions on Visualization and Computer Graphics,

Vol. 17, No. 2, pp. 132–145, 2011. 

[8] C.F. Juang, T.C. Chen, and W.Y. Cheng, “Speedup of 

Implementing Fuzzy Neural Networks with High-dimensional 

Inputs through Parallel Processing on Graphic Processing 

Units,” IEEE Trans-actions on Fuzzy Systems, Vol. 19, No. 4, 

pp. 717–728, 2011. 

[9] N. Harvey, R. Luke, J.M. Keller, and D. Anderson, “Speedup of 

Fuzzy Logic through Stream Processing on Graphics Processing 

Units,”in 2008. CEC IEEE World Congress on Computational 

Intelligence and Congress on Evolutionary Computation,

pp.3809–3815, 2008. 

[10] D. Anderson and S. Coupland, “Parallelisation of Fuzzy 

Inference on a Graphics Processor Unit using the Compute 

Unified Design Architecture,”in Proceedings of the UK 

Workshop on Computational Intelligence (UKCI’08), pp. 1–6, 

2008. 

[11] L.T. Ngo, D.D. Nguyen, C.M. Luong et al.,., “Speedup of 

Interval Type 2 Fuzzy Logic Systems based on GPU for Robot 

Navigation,” Advances in Fuzzy Systems, Vol. 2012, pp. 4, 

2012. 

[12] J.M. Mendel, “Fuzzy Logic Systems for Engineering: A 

Tutorial,”Proceedings of the IEEE FUZZ, Vol. 83, No. 3, pp. 

345–377, 1995. 

[13] G.C. Mouzouris and J.M. Mendel, “Non-singleton Fuzzy Logic 

Systems: Theory and Application,” IEEE Transactions on Fuzzy 

Systems, Vol. 5, No. 1, pp. 56–71, 1997. 

[14] N.N. Karnik and J.M. Mendel, “Applications of Type-2 Fuzzy 

Logic Systems to Forecasting of Time-series,” Information 

Sciences, Vol. 120, No. 1, pp. 89–111, 1999. 

[15] J.M. Mendel, “Uncertainty, Fuzzy Logic, and Signal 

Processing,” Signal Processing, Vol. 80, No. 6, pp. 913–933, 

2000. 


