
Speedup of Type-1 Fuzzy Logic Systems on

Graphics Processing Units Using CUDA

Durlabh Chauhan1, Satvir Singh2, Sarabjeet Singh3 and Vijay Kumar Banga4

1,2Department of Electronics & Communication Engineering,
SBS State Technical Campus, Ferozepur–152004, (Punjab) India

3Department of Computer Science & Engineering,

SBS State Technical Campus, Ferozepur–152004, (Punjab) India
4Department of Electronics & Communication Engineering,

Amritsar College of Engg. & Tech., Amritsar–143001, (Punjab) India

E-mail: 1er.durlabh@gmail.com, 2drsatvir.in@gmail.com,
3sarabjeet_singh13@yahoo.co, 4v_banga@rediffmail.com

Abstract—Parallelcomputing is one of significant

components of the High Performance Computing (HPC)

and is being used to solve problems, which are large and

complex in nature. Fuzzy Logic System (FLS) is a problem

that becomes computationally intensive with increase in

number of inputs and/or fuzzy rules. Running an FLS is

highly parallel in nature, therefore, can be implemented in

parallel on GPU using CUDA. In this paper, various fuzzy

computations viz. rule firing, implication, aggregation and

defuzzification are performed in parallel. Multiple threads

are run at a time to fire multiple fuzzy rules,

simultaneously, that reduces the overall FLS execution

time. It is observed from simulation results that GPU

works faster as compared to CPU when either number of

inputs is increased or number of fuzzy rules.

Keywords: High Performance Computing, Fuzzy Logic

Systems, General Purpose Computing on Graphics

Processing Unit, Compute Unified Design Architecture

I. INTRODUCTION

Artificial Intelligence (AI) undoubtedly is the
backbone of the emerging technological advancements,
however, implementation involves intensive
computation owing to increased data sizes. Methods to
improve the runtime performance construe the areas of
research to reduce mathematical computations and
parallelization of algorithm in hardware. Graphics
Processor Units (GPU), plays a major role in gaming
and graphics applications and allows for general
purpose programming on remarkably fast parallel
hardware using a Single Instruction Multiple Data
(SIMD) programming architecture. Fuzzy Logic,
introduced by Zadeh [1], [2], is one of the exigent part
of AI and possess inherent parallel nature. General
Purpose computing on GPU (GPGPU) is targeted by
many researchers to speed up complicated algorithms
especially, AI algorithms and their applications [3].
Ander-son et al. presented a GPU solution for the fuzzy
C-means clustering algorithms [4]. Earlier this solution
used OpenGL and Cg (graphics libraries) to achieve
approximately two folds of computational speedup for
some clustering profiles using NVIDIA 8800 GPU.
They later generalized the system for the use of non-
Euclidean metrics [5]. Further, Sejun Kim describes the
method used to adapt a multilayer tree structure
composed of fuzzy adaptive units into CUDA
(Compute Unified Device Architecture) platforms [6].

In [7], Chiosa and Kolb present a framework for

mesh clustering solely implemented on the GPU with a

new generic multilevel clustering technique. Chia

et al., have proposed the implementation of a zero-order

TSK-Fuzzy Neural Network (FNN) on GPUs to reduce

training time in [8].

Harvey et al., have presented a GPU solution for

fuzzy inference system in [9]. Anderson et al., present a

parallel implementation of fuzzy inference on GPU

using CUDA in[10]. Two folds of speed improvement

of this naturally parallel algorithm have been achieved

under typical inference profiles. One problem with this

system and the implementation on GPU is that they

both rely upon OpenGL and Cg libraries, which makes

system generalization difficult for new comers to

GPGPU. Further, Ngo et al., report an implementation

of Interval Type-2 FLS on GPU using CUDA with a

tremendous speedup of 30 folds in [11].

In this paper, parallel functionality with CUDA

programming model, for parallel implementation of a

Type-1 Sugeno FLS on GPU, is investigated with

increased number of inputs and fuzzy rules. After this

brief historical background rest of this paper is outlined

as follows: Section II targets CUDA programming

model for GPGPU. Section III introduces Type 1 FLS

along with the scope of parallelism wherever possible.

Section IV presents simulation results and a speedup

comparison of serial and parallel computing using CPU

and GPU, respectively. Finally, section V concludes the

research workand presents future off-shoots.

II. CUDA PROGRAMMING MODEL

CUDA is a parallel computing platform and

programming model introduced by NVIDIA that

increases computing performance substantially by

harnessing the power of parallelism of the GPU. CUDA

gives program developers the direct access to the virtual

instruction set and memory of the parallel

computational elements in CUDA enabled GPUs. The

CUDA platform is accessible to software developers

through CUDA accelerated libraries, compiler

directives (such as Open ACC), and extensions to

industry-standard programming languages, including C,

C++ and FORTRAN. C/C++ programmers use

International Conference on Communication, Computing & Systems (ICCCS–2014)

268

CUDAC/C++, compiled with nvcc which is NVIDIA’S

LLVM-based C/C++ compiler. A C/C++ program using

CUDA can interface with one GPU or multiple GPUs

and can be identified and utilized in parallel, allowing

for unprecedented processing power on desktop

computers.

CUDA allows multiple kernels to be run

simultaneously on GPU cores. CUDA refers to each

kernel as a grid. A grid is a collection of blocks. Each

block runs the same kernel, however, is independent of

each other (this has significance in terms of access to

memory types). A block contains threads, which are the

smallest divisible unit on a GPU.

A thread block is a number of SIMD threads that

work on core at a given time. Threads can exchange

information through the shared memory and can be

synchronized. The operations are systematized as a grid

of thread blocks. For parallel operation the programming

model allows a developer to partition a program into

several subprograms, each of which is executed

independently on a block. Each subprogram can be

further divided into finer pieces that perform the same

function but execute on different threads independently

within the same block. For data set parallelism, data sets

can be divided in to smaller chunks that are stored in the

shared memory, and each chunk is visible to all threads

of the same block. This local data arrangement approach

reduces the need to access off-chip global memory,

which reduces data access time.

Fig. 1 CUDA Architecture

The next critical component of a CUDA application

is the memory model. There are multiple types of

memory and each has different access times. The GPU is

broken up into read-write per thread registers, read-write

per thread local memory, read-write per-block shared

memory, read-write per-grid global memory, read-only

per-grid constant memory, and read-only per-grid

texture memory. Texture and constant memory have

relatively small access latency times, while global

memory has the largest access latency time.

Applications should minimize the number of global

memory reads and writes. This is typically achieved by

having each thread read its data from global memory

and store its content into shared memory.

The basic structure of a CUDA code comprises of

allocation of memory space (using cuda Malloc

function) on device (GPU) and (using regular malloc

function) on host (CPU). Data which is copied from the

host to the device for the call of kernel routine to be

executed on the GPU (using function cuda Memcpy)

also defines the number of threads and their physical

structure. Kernel is prefixed with the global keyword.

Results are transferred from GPU to CPU in the same

fashion as data is copied from host to device.

III. SCOPE OF PARALLELISM IN TYPE-1 FLS

Theory of FLS given by Zadeh a fuzzy set is

defined for a particular domain, and it is characterized

by a membership function that maps elements from the

domain to a real valued numbers [1], [2]. Mendel and

many researchers gave numerous methods to design and

implement FLS for various applications [12]–[15].

Theory of FLS given by Zadeh a fuzzy set is defined for

a particular domain, and it is characterized by a

membership function that maps elements from the

domain to a real valued numbers.

Fig. 2 CUDA Process Flow

In this paper every input has been fuzzified using

four arbitrary located Gaussian membership functions

that are characterized by two parameters, i.e., mean (m)

and standard deviation (). Gaussian membership

function is symmetrical about its mean and is expressed

mathematically as (1)

2

2

2

)(
exp)(

mx
x

 (1)

In this paper, an FLS with 4 inputs and 1 output is

subjectedto parallel computation for forecasting of

Mackey-Glass timeseries [14]. For implication and

aggregation, min and maxoperator are investigated. The

defuzzification is performedwith the height

defuzzification method as symmetrical shaped Gaussian

fuzzy sets have been used to fuzzify consequent.Output

of the height defuzzifier is given by (2)

Speedup of Type-1 Fuzzy Logic Systems on Graphics Processing Units Using CUDA

269

M

i i

i

M

i i

x

xC
y

1

1

)(

)(

 (2)

Here C represents the location of singleton

consequents fuzzy sets and (xi) represent clipping level

for each rule after implication and M represents total

number of fuzzy rules. However, for implementation of

the FLS defined above in CUDA, the foremost and the

most crucial step is to allocate the memory space for the

data sets to be used in the system,as the choice and

format of data affects performance of thealgorithm.

Scope of possible parallel computational

processing is discussed as follows: Harvey et al., [9]

and Anderson et al., [10] in their respective work have

given a vast scope of parallelism for Type-1 FLS. In the

same fashion Ngo et al., [11] presented a novel scope of

parallelism for Interval Type-2 FLS. However, in all

these implementations the emphasis was laid to

parallelize the number of fuzzy rules and discrete levels

for a typical FLS with two inputs and single output. So,

a single FLS was computed with parallel rule inference

on GPU using CUDA. However, a typical FLS can be

processed multiple times with fixed fuzzy rules and

discrete levels but varying inputs. Here lies our scope of

parallelism, we construe our code to compute multiple

FLS in parallel on GPU as a FLS serially on CPU will

consume more time.

IV. PARALLEL I MPLEMENTATION

Two M×N dimensional ‘Mean’ and ‘Sigma’

matrices are used in this implementation where M

denotes number of fuzzy rules and N is number of

antecedents. These matrices hold mean and sigma

values of Gaussian membership function in accordance

with fuzzy rules used in the FLS. An M×1 dimensional

‘Consequent’ matrix contains only mean values of the

consequent fuzzy sets as systems uses height

defuzzificationmethod given by equation (2). Multiple

inputs are provided to the systems collectively in the

form of an L×N dimensional input matrix, X, where L is

the number of inputs.The CPU executes rule firing

sequentially with a single input at a time and causes

more computational time. Whereas, multiple threads are

run at the same time to fire multiple rules

simultaneously using system matrices, i.e., ‘Mean’,

‘Sigma’ and ‘Consequent’ matrices,which reduce the

execution time for the FLS. A kernel function is

initialized from CPU to pass inputs in parallel to

various GPU cores. Copying system matrices everytime

along with input vectors and increases the GPU

processing time. Therefore, system matrices are copied

only once and subsequently require only input vectors

those are passed to GPU in parallel to enhance the GPU

performance.

V. RESULTS DISCUSSION

The speed up performance with GPU

implementation of a Type-1 Sugeno FLS was compared

with that of CPU implementation. Intel Core 2 Duo

system under experimentation has 2GB of system

RAM, and Windows 7 platform. The GPU used here

works on nVIDIAGeforce GTX 650 with 1024 MB of

texture memory, 192 stream processors, and PCI

Express X16.

The number of antecedents is fixed to 4 and

consequentto 1, the number of rules is varied between

10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and inputs were

varied as 128, 256, 512, and 1024. A set of input data is

obtained from Mackey-Glass time series for

experimentation. Ratio of CPU to GPU runtimes with

respect to number of fuzzy rules has been tabulated in

Table I and presented graphicallyin Fig. 3.

TABLE I FUZZY RULES VS. CPU TO GPU SPEEDUP RATIO

Number of Fuzzy

Rules

CPU to GPU Runtime Speedup Ratio

128

Inputs

256

Inputs

512

Inputs

1024

Inputs

10 1.937 4.875 5.034 5.488

20 2.437 3.032 4.548 6.132

30 1.340 2.319 4.319 6.544

40 2.000 2.476 3.968 7.063

50 1.516 3.532 4.410 7.063

60 1.730 3.000 4.365 7.185

70 1.602 3.205 4.509 7.134

80 1.500 2.742 4.500 7.832

90 1.709 2.577 4.446 5.488

100 1.624 2.504 4.652 6.132

Here, it can be observed clearly that advantage of

GPU computing has increased with increased input data

vector sizes. In another simulation results, it is observed

that CPU to GPU speedup time improves with increase

in fuzzy rules. Computational time on CPU varies

significantly due to already always running applications

at the back end.Therefore, to present fair comparison

serial and parallel timing analysis experiments with

same FLS have been repeated 30 times. Average of

CPU to GPU speedups for 30 monte-carlosimulations

during serial and parallel computations of rule firing,

implication, aggregation and defuzzification have

beenpresented in Fig. 4–7.

Fig. 3 CPU to GPU Speedup Ratio vs Inputs Data Length

International Conference on Communication, Computing & Systems (ICCCS–2014)

270

The overall performance of CPU to GPU speedup

timingswith respect to collective number of inputs,

presented to the FLS, is shown in Fig. 8 that depicts that

larger the number offuzzy rules better is the speedup

performance.

Fig. 4 CPU and GPU Runtime Comparison for 128 Inputs

Fig. 5 CPU and GPU Runtime Comparison for 256 Inputs

VI. CONCLUSION AND FUTURE WORK

This paper has demonstrated the implementation

and comparative runtime performances of a typical

Sugeno Type-1 FLSon a GPU and CPU without the use

of a graphics API which is flexible, scalable, and can be

used by any researcher with knowledge of C. It has

been demonstrated that the CPU works equally fast as

GPU when the system is small. As the number of rules

or the number of inputs increase the GPU outperforms

the CPU runtime. Here, in the work nearly 7.83 times

speedup could be achieved as 1024 inputs supplied in

parallel to the FLS ported on GPU. The GPU has an

initial setup overhead of kernel loading and memory

transfer, however, subsequent parallel computations

leads to a small increase in processing time despite a

substantial increase in computational load. On the other

hand, CPU has no initial cost, but computation time

grows linearly with computational load much beyond

GPGPU runtime.

Fig. 6 CPU and GPU Runtime Comparison for 512 Inputs

Fig. 7 CPU and GPU Runtime Comparison for 1024 Inputs

Fig. 8 CPU to GPU Speedup Ratio for Various Input Data Sets

The parallelization of more FLS applications is

next on ouragenda. That will follow implementation of

Interval Type-2 FLSs and Generalized Type-2 FLSs for

various applications that require much more

computational time otherwise.GPGPU is also possibly

investigated to on Evolutionary Algorithms those are

computational intensive and parallel innature.

REFERENCES

[1] L.A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8,

No. 3, pp. 338–353, 1965.

[2] L.A. Zadeh, “Fuzzy Logic and Approximate Reasoning,”

Synthese, Vol. 30, pp. 407–428, 1975.

[3] S. Singh, S. Singh, V.K. Banga, and D. Chauhan, “CUDA for

GPGPU Applications-A Survey,” in National Conference on

Contem-poraryTechniques & Technologies in Electronics

Engineering, Murthal,Sonepat, India, March 2013, p. Accepted.

Speedup of Type-1 Fuzzy Logic Systems on Graphics Processing Units Using CUDA

271

[4] D.T. Anderson, R.H. Luke, and J.M. Keller, “Speedup of

FuzzyClustering through Stream Processing on Graphics

Processing Units,” IEEE Transactions on Fuzzy Systems,

Vol. 16, No. 4, pp. 1101–1106, 2008.

[5] D. Anderson, R.H. Luke, and J.M. Keller, “Incorporation of

non-EuclideanDistance Metrics into Fuzzy Clustering on

Graphics Processing Units,” in Analysis and Design of

Intelligent Systems using Soft Computing Techniques. Springer,

pp. 128–139, 2007.

[6] S. Kim and D. Wunsch, “A GPU based Parallel Hierarchical

Fuzzy ART Clustering,” in The 2011 International Joint

Conference on Neural Networks (IJCNN), pp. 2778–2782, 2011.

[7] I. Chiosa and A. Kolb, “GPU-based Multilevel Clustering,”

IEEE Transactions on Visualization and Computer Graphics,

Vol. 17, No. 2, pp. 132–145, 2011.

[8] C.F. Juang, T.C. Chen, and W.Y. Cheng, “Speedup of

Implementing Fuzzy Neural Networks with High-dimensional

Inputs through Parallel Processing on Graphic Processing

Units,” IEEE Trans-actions on Fuzzy Systems, Vol. 19, No. 4,

pp. 717–728, 2011.

[9] N. Harvey, R. Luke, J.M. Keller, and D. Anderson, “Speedup of

Fuzzy Logic through Stream Processing on Graphics Processing

Units,”in 2008. CEC IEEE World Congress on Computational

Intelligence and Congress on Evolutionary Computation,

pp.3809–3815, 2008.

[10] D. Anderson and S. Coupland, “Parallelisation of Fuzzy

Inference on a Graphics Processor Unit using the Compute

Unified Design Architecture,”in Proceedings of the UK

Workshop on Computational Intelligence (UKCI’08), pp. 1–6,

2008.

[11] L.T. Ngo, D.D. Nguyen, C.M. Luong et al.,., “Speedup of

Interval Type 2 Fuzzy Logic Systems based on GPU for Robot

Navigation,” Advances in Fuzzy Systems, Vol. 2012, pp. 4,

2012.

[12] J.M. Mendel, “Fuzzy Logic Systems for Engineering: A

Tutorial,”Proceedings of the IEEE FUZZ, Vol. 83, No. 3, pp.

345–377, 1995.

[13] G.C. Mouzouris and J.M. Mendel, “Non-singleton Fuzzy Logic

Systems: Theory and Application,” IEEE Transactions on Fuzzy

Systems, Vol. 5, No. 1, pp. 56–71, 1997.

[14] N.N. Karnik and J.M. Mendel, “Applications of Type-2 Fuzzy

Logic Systems to Forecasting of Time-series,” Information

Sciences, Vol. 120, No. 1, pp. 89–111, 1999.

[15] J.M. Mendel, “Uncertainty, Fuzzy Logic, and Signal

Processing,” Signal Processing, Vol. 80, No. 6, pp. 913–933,

2000.

