Fuzzy Systems using GPGPU — A Survey

Satvir Singh' and Shivani Kakkar®
"2Department of Electronics & Communication Engineering,
Shaheed Bhagat Singh State Technical Campus Moga Road, Ferozepur—152004, Punjab, India
E-mail: 'drsatvir.in@gmail.com, *kakkarshivani47@yahoo.in

Abstract—This paper presents a survey on use
GPGPU (General Purpose computing on Graphics
Processing Unit) to implement Fuzzy Logic Systems
(FLSs). Features such as massively parallel, multithreaded
operations, many-core processor make Graphics
Processing Unit (GPU) suitable for real-time applications.
Inherent parallel nature of Type-1 and Type-2 FLSs has
been exploited for parallelization on GPU. Various
applications, like fuzzy clustering, image processing, robot
navigation, and fuzzy arithmetic library, etc. have been
studied for better performances on GPU using CUDA
(Compute Unified Design Architecture) programming
model. In present scenario of High Performance
Computing (HPC), GPGPU is most significant low cost
solution for many engineering problems.

Keywords: GPU, GPGPU, CUDA, Type-1 and Type-2
FLSs

I. INTRODUCTION

Graphic Processing Unit (GPU) developed in
1970s is traditionally used for texture and video
rendering. GPU is exceptionally suited for HPC just
because of its large number of computational cores. The
high speed processors inside GPU have 100s of ALUs
running 1000s of identical threads in parallel to execute
instructions simultaneously. Tasks performing identical
operations which are independent of each other execute
on many data elements in parallel. CPU spends a lot of
time on computations as compared to GPU. So, the
GPU is faster as compared to CPU owing to larger
number of computations being performed on processing
cores of GPU simultaneously. GPU being classically
used for texture and graphics applications is now
playing a wvital role in speed up of many
computationally intensive algorithms. This general-
purpose parallel computational functionality of GPU is
supported by the scalable CUDA programming model
[16][18]. In 2007, first release of CUDA explored the
parallel architecture of GPUs for parallel computing for
various applications other then graphics. It enables GPU
to execute programs written in C. It is a small set of
extensions to C/C™" and enable heterogeneous
programming including provisions for both host (CPU)
and device (GPU) through PCI express bus. Data
parallel portions of an algorithm are executed on the
device as kernels. One kernel is executed at a time by
many threads in a block. CUDA threads on a GPU can
be executed independently and each thread performs the
same operation and execute same kernel as shown in
Fig. 1, from architectural point of view.

CUDA uses software and hardware required for
making GPU hardware easily accessible to
programmers. Not only CUDA, there are many other
programming platforms, like Shader, OpenCL, and

open GL, etc. for exploiting GPGPU. In CUDA, to start
application data is copied from CPU to GPU memory
over a PCI Express bus followed by load and execute
program. Then program results are copied back from
GPU memory to CPU memory.

CPU GPU
Grid 1
[
Block 1 Blockn
‘ Thread 1 ‘ ‘Threadl ‘
‘ Threadn ‘ Threadn
Grid n
Kometn o

Fig. 1 CUDA processing Model Design

As FLSs possess inherent parallel nature [1], it is
casy to exploit them on parallel architecture of GPUs
for implementation. This paper presents various Fuzzy
Logic engineering problems where GPU has been
investigated for increased speedups. Organization of
rest of this paper as: Section I presents an overview of
Type-1 and Type-2 FLSs. Section II discusses about
basics of Type-1 and Type-2 FLS and Section III
reports various GPGPU implementations for FLS
concepts and applications. Finally, Section IV
summarizes the paper and presents motivational
offshoots for the HPC researchers working on FLSs.

II. Fuzzy LOGIC SYSTEMS

The term Fuzzy Logic was introduced by Lotfi A.
Zadeh in 1965 [2][3]. In 1970s, research groups formed
in around the world investigated fuzzy logic where
conventional mathematical tools face difficulties in
handling engineering (especially, control) problems.
Fuzzy sets provide provision for dealing with vagueness
and ambiguity. In fuzzy sets, each element is mapped
within [0, 1] by an analog membership function [4].
Rulebase is extracted from experiential fuzzy
knowledge of experts to control the output variable. A
fuzzy rule is a simple IF-THEN rule with a condition
and a conclusion. For example, if femperature (input
variable) is cold (fuzzy set) then output command is
heat (fuzzy set). Aggregated fired fuzzy rules are

Fuzzy Systems using GPGPU — A Survey

subjected to defuzzification process to obtain a crisp
output as resultant. The max operator and Center of
Gravity are most preferred methods for aggregation and
defuzzification, respectively.

A. Type-1 Fuzzy systems.

Type-1 fuzzy systems consist of inputs fuzzified
using fuzzy sets, expert knowledge extracted in the
form of fuzzy rulebase, inference engine, and
defuzzifier as shown in Fig. 2. Type-1 fuzzy sets are
incapable of handling uncertainties over uncertainties,
i.e., second ordered uncertainty. So keeping in mind
another type of fuzzy sets were introduced by Zadeh
known as Type-2 fuzzy sets [3].

Crisp
Inputs

Crisp
Output

Fuzzy Output Sets

Fig. 2 Block Diagram Representation of an FLS [2]

Fuzzy Input Sets

B. Type-2 Sets & Fuzzy Systems

Fuzzy sets models words that are being used in
rulebase and inference engine. However, word mean
different thing to different people and, therefore, are
uncertain. Membership degree of a Type-1 fuzzy set
cannot capture uncertainties about the words. Hence,
another type of fuzzy set, i.e., Type-2 fuzzy Sets, came
into existence which is capable of handling such
uncertainties. For such a fuzzy set membership value
corresponding to some crisp input is not a crisp value
rather a Type-1 fuzzy set called secondary membership
[6][17]. This concept can be extended to Type-n fuzzy
sets. Computations based on Type-2 fuzzy sets are very
intensive, however, when secondary membership is
assumed unity the computational burden reduces
drastically. This is another variant to fuzzy set
representation and is known as Interval Type 2 fuzzy
sets [S][16][17].

III. Fuzzy SYSTEMS USING GPGPU

C. Type-1FLS
1) Fuzzy Inference System (FIS) on GPU

Here GPU is reviewed for speedup up of FLSs
which is one of the non-graphics based applications.
Derek T. Anderson, ef al. along with his team
investigated this by exploiting inherent parallel nature
of FLSs. 128 processing units were operated in parallel
thus making intense calculations of constructing
rulebase and inference process faster as compared to
that of CPU [7]. The GPU used was NVIDIA’s Geforce
8800 GTX, having 128 stream processors, a core clock
of 575MHz, shader clock of 1350MHz and that is

capable of handling 350GFLOPs. GPU implementation
has found 2 orders of magnitude faster as compared
to CPU.

2) Mamdani FIS

Derek Anderson, et al. here exploited the HPC
power of GPU to speedup the inference process inside
Mamdani FIS [13]. Various steps of FIS, i.e.
fuzzification, implication, aggregation and
defuzzification are executed as separate CUDA kernels
on GPU. NVIDIA 8800 BFGGTX GPU with 768 MB
of texture memory was used. PCI express X16 was
used. Number of inputs are kept as 2 whereas number
of rules are varied as 16, 32, 64 and 128. In addition,
discretization levels are varied as 256, 512, 1024, 2048
and 4096. Comparative analysis of CPU versus GPU is
conducted for a series of 30 runs. Speedup of
approximately a factor of 178 was obtained on GPU as
compared to CPU. Parallelization of larger number of
FISs and extension of same work to Type-2 fuzzy sets
may be treated as an offshoot.

3) Fuzzy TSK tuning

Artificial Intelligence (AI) techniques are too slow
to be computed on CPU in real-time. In 2012, Ferreira
and Cruz have introduced special approach to offload
parts of the Al computations, i.e., automatic training of
fuzzy TSK tuning, of a game on to a GPU [8]. In TSK
systems consequents for an output which are N-order
polynomials are tuned using Batch Least Square (BLS)
method and input fuzzy sets are tuned using gradient
method. Both these methods of tuning are operated in
parallel using CUDA. Gaussian membership function
being continuous and easily differentiable is used in
2-input and 1-output FLS. In this MISO system, first
input has five fuzzy sets whereas second has seven
fuzzy sets and, hence, maximum thirty five fuzzy rules.
Experiments are run on three different machines, (1)
Geforce GTX 550 Ti, (2) Tesla C2070 and (3) Geforce
GTX 590. In all these cases, GPU implementation
surpassed CPU by five to six times. The method can be
implemented for real-time applications, like games to
learn the player’s behavior and its adaptation to various
circumstances over time. The purposed method can also
be experimented for complex training patterns
containing high dimensional inputs and number of rules
in future.

4) Fuzzy arithmetic library on GPU

Fuzzy arithmetic library is introduced by David and
Marin as solution to the problems which deals with the
uncertainty and complex data representation in the form
of integer and floating point [9]. Here with the use of
CUDA based GPGPU execution time for basic
operations (addition and multiplication) has been
improved tremendously. All the techniques have been
implemented using NVIDIA’s GPU based on fuzzy

239

International Conference on Communication, Computing & Systems (ICCCS-2014)

numbers. The method used for implemented was
midpoint-radius encoding and was compared with
traditional lower upper encoding. Gain of 2 to 20 was
obtained by preferring the former method over later.
Evaluation of the accuracy of the new representation
format is the extension of this work.

D. Fuzzy Logic Based Image Processing

The real time image processing using simple
algorithm is computationally intensive task even with
the moderate size images. With further increase in
image size it becomes really a difficult task. Anderson
et al. introduced parallelization of fuzzy logic based
image processing where edge computation for each
pixel being independent of all other pixels calculation is
made parallel. GPGPU implementation using CUDA
consisted of two CUDA kernels, one for rule firing and
another for defuzzification [10]. The CPU and GPU
implementations were then run over a series of different
image sizes. Maximum of 126 times speed
improvement to the original algorithm is achieved on a
NVIDIA 8800 Ultra GPU, and hence making the
processing of the algorithm real time. The most
significant advantages of GPGPU implementation
include its low price and ease of learning & using
CUDA API. Moreover, such a high speed allows
spending more time at higher level image processing
operations, e.g., object recognition or tracking, etc.
Various higher level processing operations can also be
performed on GPU in future using a generalized GPU
Mamdani FIS implementation.

Nowadays, with the quantitative increase in the
research and practice of clinical radiology and also with
the increased size of images, radiology to become
practical in real time it is important to implement the
image segmentation rapidly which is made possible by
this paper. The Iterative Relative Fuzzy Connectedness
(IRFC) segmentation is one of the families of fuzzy
connectedness algorithm [11]. In order to segment large
medical image data sets a parallel (IRFC) algorithm via
image foresting transform is developed and
implemented using NVIDIA’s CUDA on GPU. The two
major parts of the algorithm, (1) computation of fuzzy
affinity relations and (2) then computing the fuzzy
connectedness relations and tracking labels for objects
of interest are computed as two separate CUDA kernels
and a tremendous speed improvement could be
achieved. The GPU used is Tesla C1060 GPU and
speed increased by a factor ranging from 2.4 to 42.7
times. In future, automatic anatomy recognition in
radiology can be easily implemented on GPU.

Fuzzy Anisotropic Diffusion (FAD) algorithm
basically oriented for high resolution multidimensional
image/video is considered to be computationally
complex technique [12]. As fuzzy logic is inherently
parallel in nature [1], FAD can be easily implemented
in parallel on GPU using CUDA that replaces the recent

methods for enhancement, reconstruction, post
processing and classification procedure which are not
feasible for real time implementation. The experiments
are performed on both NVIDIA Tesla C2075 GPU
using CUDA and on quad-core Intel Xeon ES603 CPU
in the MATLAB environment. The implementation of
FAD algorithm using GPGPU is found to be less time
consuming, i.e., 140 times faster than that of MATLAB
implementation on CPU. GPGPU implementation has
also enhanced the resolution of the image and reduced
its computational complexity.

E. Fuzzy Clustering Algorithms

Fuzzy clustering is one of the unsupervised
learning procedures which are helpful in pattern
recognition applications. As the number of various
clustering parameters increases its computation
becomes more and more hard. Anderson er al.
investigated GPGPU in order to speed up clustering
algorithm as it involves various stages and components
that are data independent. In this implementation arrays
of input data sets are passed from CPU to GPU as a
texture [13]. To calculate the final updated center the
whole algorithm is divided into six different
subprograms and run on GPU. GPGPU implementation
of clustering is found to have better speed performance
by a factor of 2 at lower cost. Many heavy other
computations can be implemented using the basic idea
of this paper.

As discussed earlier, the author used simpler
algorithm and offloaded the task of fuzzy clustering to a
GPU, however, this approach is not much efficient for
large data sets. Therefore, later he incorporated non-
Euclidean distance metrics into fuzzy clustering on
GPU [14]. Here, NVIDIA 8800 GPU is used along with
32-bit Intel CPU. The results have shown that as the
number of samples are increased GPU outperformed
CPU with this technique. Computations speedup using
this method has improved by almost 2 orders of
magnitude. The work can, further, be extended to even
larger data sets.

F. Type-2 FLS

1) Interval type-2 FLS for robotic navigation

Type-2 FLSs are comprised of fuzzy sets whose
membership values are Type-1 membership functions
and called secondary membership functions. Fuzzy
computations such as rule implications, aggregation,
and defuzzification, etc., become very intensive for
ordinary computers [19]. Ngo et al. proposed the use of
GPGPU for implementation of IT2 FLS to achieve
obstacle avoidance behavior of robot navigation [15].
Various stages and components of the algorithm are
independent of each other, therefore, possible to be
implemented in parallel on GPUs. An FLS consisting of
two inputs (the extended fuzzy directional relations and

240

Fuzzy Systems using GPGPU — A Survey

range to obstacle) and one output (angle of deviation) is
implemented on NVIDIA Geforce GT540M graphics
card having 96 CUDA cores, 1GB of texture memory
along with Intel Core i3-2310M2, 1 GHz CPU.
Experimental results have shown that with the increase
in the number of rules and sample rate the GPU
outperforms the CPU. With 8192 sample rate and 512
rules GPU performs approximately 30 times faster than
that of CPU. In future, GPGPU based Type-2 FLS
implementations can be investigated for better
performance to solve engineering problems.

IV. CONCLUSION

In this paper, we have shown how GPGPU has
emerged out as a low cost solution to HPC. Tremendous
amount of speedups achieved using GPGPU in
implementations of different FLSs is the driving force
behind its popularity. In Mamdani FLS, a speed up of
approximately a factor of 178 has been obtained on
GPU as compared to CPU. FIS implementation runs
approximately 51 times faster on GPU than traditional
methods used on CPU. Implementation of fuzzy TSK
tuning on GPU surpassed the CPU by a factor of around
5 to 6 times. Fuzzy logic based image processing using
GPU attained 1.26 times speed improvement. GPU
based fuzzy connectedness image segmentation
algorithm achieved a speed up factor of 2 to 42 times.
The processing time of GPU based algorithm
implementation of FAD is 146 times less than
corresponding processing time achievable with
conventional CPU implementation. Speed of fuzzy
clustering on GPU increased over 2 orders of magnitude
and on incorporation of non-Euclidean metrics into
fuzzy clustering GPGPU has, further, increased the
speed up by two orders of magnitude. In fuzzy GPU,
gain of 2 to 20 has been obtained. An FLS designed on
GPU for robotic navigation with collision avoidance
behavior runs 30 times faster on GPU as compared to
CPU implementation.

All these FLS implementations using GPGPU (not
big in numbers, at this point of time) and their
impressive outcomes are sufficient driving force for
researcher to investigate this low cost HPC paradigm
for more applications.

REFERENCES

[1] D. Anderson and S. Coupland, “Parallelisation of Fuzzy
Inference on a Graphics Processor Unit using the Compute
Unified Device Architecture, ” in Proceedings of the UK
Workshop on Computational Intelligence (UKCI'08), 2008,
pp. 1-6.

241

(2]
(3]
(4]
[3]
(6]

(7

(8]

(9]

[10]

[11

[12]

[13]

[14]

[13]

[16]

[17]

[18]

[19]

J. M. Mendel, “Fuzzy Logic Systems for Engineering: A
Tutorial, ” Proceedings of the IEEE, vol. 83, no. 3, pp. 345-377,
1995.

L. A. Zadeh, “The Concept of a Linguistic Variable and Its
Application to Approximate Reasoning”. Information Sciences,
vol. 8, no. 3, 1975, pp.199-249.

D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and
Applications. NY: Academic Press, 1980.

O. Castillo and P. Melin, 3 Type-2 Fuzzy Logic. Springer, 2008.
N. N. Karnik and J. M. Mendel, “Operations on Type-2 Fuzzy
Sets, ” International Journal on Fuzzy Sets & Systems, vol. 122,
pp. 327-348, 2001.

N. Harvey, R. Luke, J. M. Keller, and D. Anderson, “Speedup of
Fuzzy Logic Through Stream Processing on Graphics
Processing Units, ” in [EEE Congress on Evolutionary
Computation, 2008, pp.3809-3815.

B. B. Ferreira and A. J. Cruz, “A Parallel Method for Tuning
Fuzzy TSK Systems with CUDA, ” SBC-Proceedings of SB
Games, Brazilian Computer Society (SBC), pp. 5-8, 2012

D. Defour and M. Marin, “Fuzzy GPU: A Fuzzy Arithmetic
Library for GPU, ” in Parallel, Distributed and Network-Based
Processing (PDP), 2014 22nd Euromicro International
Conference on. IEEE, 2014, pp.624-631.

R. H. Luke III, D. Anderson, J. M. Keller, and S. Coupland,
“Fuzzy Logic based Image Processing using Graphics Processor
Units”, in IFSA/EUSFLAT Conference, 2009, pp.288-293

Y. Zhuge, J. K. Udupa, K. C. Ciesielski, A. X. Falc™ao, P. A.
Miranda, and R. W. Miller, “GPU-based Iterative Relative
Fuzzy Connectedness Image Segmentation, ” in SPIE Medical
Imaging. International Society for Optics and Photonics, 2012,
pp- 831 604831 604.

R. d. J. D. Coello, F. d. J. S. Lugo, A. C. Atoche, and J. O.
Aguilar, “GPU Implementation of Fuzzy Anisotropic
Diffusion.” in International Conference on Information and
Communication Technologies and Applications (ICTA), 2012

D. T. Anderson, R. H. Luke, and J. M. Keller, “Speedup of
Fuzzy Clustering Through Stream Processing on Graphics
Processing Units, ” IEEE Transactions on Fuzzy Systems, vol.
16, no. 4, pp. 1101-1106, 2008.

D. T. Anderson, R. H. Luke, and J. M. Keller, “Incorporation of
Non-euclidean Distance Metrics into Fuzzy Clustering on
Graphics Processing Units, ” in Analysis and Design of
Intelligent Systems using Soft Computing Techniques. Springer,
2007, pp. 128-139.

L. T. Ngo, D. D. Nguyen, C. M. Luong et al., “Speedup of
Interval Type-2 Fuzzy Logic Systems based on GPU for Robot
Navigation, ” Advances in Fuzzy Systems, vol. 2012, p. 4, 2012,
pp. 1-11

M. Khosla, R. K. Sarin, M. Uddin, and S. Singh, A. Khosla,
"Realizing Interval Type-2 Fuzzy Systems with Type-1 Fuzzy
Systems", in Cross-Disciplinary Applications of Artificial
Intelligence and Pattern Recognition: Advancing Technologies,
IGI Global, Hershey, Pennsylvania, USA, 2012, pp. 412--427.

J. M. Mendel, R. I. John and F. Liu, “Interval Type-2 Fuzzy
Logic Systems Made Simple”, [EEE Transactions on Fuzzy
Systems, vol. 14, no. 6, 2006, pp.808—821.

S. Singh, S. Singh, V. K. Banga, D. Chauhan, “CUDA for
GPGPU Applications - A Survey”, in Proc. National Conference
on Contemporary Techniques & Technologies in Electronics
Engineering, Murthal, Sonepat, India, March, 2013,
pp.189--192.

S. Singh, J. S. Saini, V. Mutneja, N. Gill, “Mobile Robot
Navigation using IT-2 FLS”, in Proc. IEEE National Conference
on Applications of Intelligent Systems (AIS-2008), Sonepat,
India, March, 2008.

