
F

S

Abstra

GPGPU (

Processing

(FLSs). Fea

operations,

Processing

Inherent pa

been explo

application

navigation,

studied for

(Compute

model. In

Computing

solution for

Keywo

FLSs

Graph
1970s is
rendering.
because of
high speed
running 10
instruction
operations
on many d
time on c
GPU is fa
number of
cores of G
used for
playing a
computatio
purpose pa
supported
[16][18]. I
parallel arc
various app
to execute
extensions
programmi
and devic
parallel po
device as k
many threa
be execute
same oper
Fig. 1, from

CUDA

making

programme

programmi

Fuzzy

Shaheed Bhag

ct—This pap

(General Pur

Unit) to im

atures such as

 many-core

Unit (GPU) su

arallel nature

oited for pa

ns, like fuzzy cl

 and fuzzy ar

r better perfo

Unified Desi

n present sc

g (HPC), GPG

r many enginee

rds: GPU, GP

I. INT

hic Processin
traditionally
GPU is exc

f its large num
d processors in
000s of identic
ns simultaneou

which are ind
data elements
omputations
aster as comp
computations

GPU simultan
texture and

a vital role
onally intensi
arallel comput
by the scalab

In 2007, first
chitecture of G
plications othe

programs wr
to C/C++

ing including
e (GPU) thr

ortions of an
kernels. One
ads in a block
d independent

ration and exe
m architectura
A uses softw

GPU hardw

ers. Not only

ing platforms

System

1,2Departm
gat Singh Stat

E-mail: 1d

per presents

rpose comput

mplement Fuz

massively par

processor

uitable for rea

of Type-1 an

rallelization o

lustering, imag

rithmetic libra

ormances on

ign Architectu

cenario of H

GPU is most s

ering problem

PGPU, CUDA,

TRODUCTION

g Unit (GP
used for te

eptionally su
mber of compu

nside GPU ha
cal threads in
usly. Tasks pe
dependent of
in parallel. CP
as compared
pared to CPU
s being perfor
neously. GPU

graphics app
e in speed
ive algorithm
tational functi
ble CUDA pr
release of CU

GPUs for para
er then graphi
ritten in C. It

and enab
provisions fo

rough PCI e
algorithm ar
kernel is exe

k. CUDA thre
tly and each th
ecute same k
al point of view
are and hard

ware easily

y CUDA, ther

s, like Shad

ms us

Satvir Sing
ment of Electro
te Technical C

drsatvir.in@gm

a survey on

ting on Gra

zzy Logic Sy

allel, multithre

make Gra

al-time applica

d Type-2 FLS

on GPU. Va

ge processing,

ary, etc. have

GPU using C

ure) program

High Perform

significant low

s.

Type-1 and T

PU) develope
exture and v
ited for HPC

utational cores
ave 100s of A
parallel to ex

erforming iden
each other ex
PU spends a
to GPU. So

U owing to l
rmed on proce
U being classi
plications is
d up of m
ms. This gen
ionality of GP

rogramming m
UDA explore
allel computin
ics. It enables
t is a small s
le heterogen

or both host (C
express bus.
e executed o
cuted at a tim

eads on a GPU
hread perform

kernel as show
w.

dware require

y accessible

re are many

der, OpenCL,

ing G

gh1 and Shiva
onics & Comm

Campus Moga

mail.com, 2kak

n use

aphics

ystems

eaded

aphics

ations.

Ss has

arious

robot

been

CUDA

mming

mance

w cost

Type-2

ed in
video

C just
s. The
ALUs
xecute
ntical

xecute
lot of

o, the
larger
essing
ically
now

many
neral-
PU is
model
ed the
ng for
GPU

set of
neous
CPU)
Data

n the
me by
U can
ms the
wn in

d for

e to

other

, and

open

appli

over

prog

GPU

easy

for i

Logi

inve

rest

Type

basic

repo

conc

summ

offsh

Zade

in a

conv

hand

Fuzz

and

with

Rule

know

fuzzy

and

varia

heat

PGPU

ani Kakkar2

munication En
a Road, Feroze

kkarshivani47

n GL, etc. for

ication data i

r a PCI Expre

gram. Then pr

U memory to C

Fig. 1 C

As FLSs pos

y to exploit th

implementatio

ic engineerin

stigated for

of this paper

e-1 and Type

cs of Type-1

rts various

cepts and a

marizes the

hoots for the H

II. F

The term Fuz

eh in 1965 [2]

around the w

ventional mat

dling enginee

zy sets provide

ambiguity. In

hin [0, 1] by

ebase is ex

wledge of exp

y rule is a si

a conclusion

able) is cold

(fuzzy set).

U – A

ngineering,
epur–152004,

7@yahoo.in

exploiting GP

is copied from

ess bus follow

rogram result

CPU memory.

CUDA processin

ssess inherent

hem on parall

on. This paper

ng problems

increased spe

as: Section I

e-2 FLSs. Se

1 and Type-2

GPGPU imp

applications.

paper and

HPC researche

FUZZY LOGIC

zzy Logic wa

][3]. In 1970s

world investig

thematical to

ering (especia

e provision fo

n fuzzy sets,

an analog m

xtracted fro

perts to contro

mple IF-THE

. For exampl

(fuzzy set) t

. Aggregated

Surve

 Punjab, India

PGPU. In CUD

m CPU to GP

wed by load a

ts are copied

.

ng Model Design

parallel natu

lel architectur

r presents var

where GPU

eedups. Orga

presents an o

ction II discu

2 FLS and

plementations

Finally, S

presents m

ers working o

SYSTEMS

as introduced

, research gro

gated fuzzy lo

ools face dif

ally, control)

or dealing with

each element

membership fu

om experien

ol the output

EN rule with

le, if tempera
then output c

d fired fuzzy

ey

a

DA, to start

PU memory

and execute

back from

ure [1], it is

re of GPUs

rious Fuzzy

U has been

anization of

overview of

usses about

Section III

s for FLS

Section IV

motivational

n FLSs.

by Lotfi A.

oups formed

ogic where

fficulties in

) problems.

h vagueness

t is mapped

unction [4].

ntial fuzzy

variable. A

a condition

ature (input

command is

y rules are

Fuzzy Systems using GPGPU – A Survey

239

subjected to defuzzification process to obtain a crisp

output as resultant. The max operator and Center of

Gravity are most preferred methods for aggregation and

defuzzification, respectively.

A. Type-1 Fuzzy systems.

Type-1 fuzzy systems consist of inputs fuzzified

using fuzzy sets, expert knowledge extracted in the

form of fuzzy rulebase, inference engine, and

defuzzifier as shown in Fig. 2. Type-1 fuzzy sets are

incapable of handling uncertainties over uncertainties,

i.e., second ordered uncertainty. So keeping in mind

another type of fuzzy sets were introduced by Zadeh

known as Type-2 fuzzy sets [3].

Fig. 2 Block Diagram Representation of an FLS [2]

B. Type-2 Sets & Fuzzy Systems

Fuzzy sets models words that are being used in

rulebase and inference engine. However, word mean

different thing to different people and, therefore, are

uncertain. Membership degree of a Type-1 fuzzy set

cannot capture uncertainties about the words. Hence,

another type of fuzzy set, i.e., Type-2 fuzzy Sets, came

into existence which is capable of handling such

uncertainties. For such a fuzzy set membership value

corresponding to some crisp input is not a crisp value

rather a Type-1 fuzzy set called secondary membership

[6][17]. This concept can be extended to Type-n fuzzy

sets. Computations based on Type-2 fuzzy sets are very

intensive, however, when secondary membership is

assumed unity the computational burden reduces

drastically. This is another variant to fuzzy set

representation and is known as Interval Type 2 fuzzy

sets [5][16][17].

III. FUZZY SYSTEMS USING GPGPU

C. Type-1 FLS

1) Fuzzy Inference System (FIS) on GPU

Here GPU is reviewed for speedup up of FLSs

which is one of the non-graphics based applications.

Derek T. Anderson, et al. along with his team

investigated this by exploiting inherent parallel nature

of FLSs. 128 processing units were operated in parallel

thus making intense calculations of constructing

rulebase and inference process faster as compared to

that of CPU [7]. The GPU used was NVIDIA’s Geforce

8800 GTX, having 128 stream processors, a core clock

of 575MHz, shader clock of 1350MHz and that is

capable of handling 350GFLOPs. GPU implementation

has found 2 orders of magnitude faster as compared

to CPU.

2) Mamdani FIS

Derek Anderson, et al. here exploited the HPC

power of GPU to speedup the inference process inside

Mamdani FIS [13]. Various steps of FIS, i.e.

fuzzification, implication, aggregation and

defuzzification are executed as separate CUDA kernels

on GPU. NVIDIA 8800 BFGGTX GPU with 768 MB

of texture memory was used. PCI express X16 was

used. Number of inputs are kept as 2 whereas number

of rules are varied as 16, 32, 64 and 128. In addition,

discretization levels are varied as 256, 512, 1024, 2048

and 4096. Comparative analysis of CPU versus GPU is

conducted for a series of 30 runs. Speedup of

approximately a factor of 178 was obtained on GPU as

compared to CPU. Parallelization of larger number of

FISs and extension of same work to Type-2 fuzzy sets

may be treated as an offshoot.

3) Fuzzy TSK tuning

Artificial Intelligence (AI) techniques are too slow

to be computed on CPU in real-time. In 2012, Ferreira

and Cruz have introduced special approach to offload

parts of the AI computations, i.e., automatic training of

fuzzy TSK tuning, of a game on to a GPU [8]. In TSK

systems consequents for an output which are N-order

polynomials are tuned using Batch Least Square (BLS)

method and input fuzzy sets are tuned using gradient

method. Both these methods of tuning are operated in

parallel using CUDA. Gaussian membership function

being continuous and easily differentiable is used in

2-input and 1-output FLS. In this MISO system, first

input has five fuzzy sets whereas second has seven

fuzzy sets and, hence, maximum thirty five fuzzy rules.

Experiments are run on three different machines, (1)

Geforce GTX 550 Ti, (2) Tesla C2070 and (3) Geforce

GTX 590. In all these cases, GPU implementation

surpassed CPU by five to six times. The method can be

implemented for real-time applications, like games to

learn the player’s behavior and its adaptation to various

circumstances over time. The purposed method can also

be experimented for complex training patterns

containing high dimensional inputs and number of rules

in future.

4) Fuzzy arithmetic library on GPU

Fuzzy arithmetic library is introduced by David and

Marin as solution to the problems which deals with the

uncertainty and complex data representation in the form

of integer and floating point [9]. Here with the use of

CUDA based GPGPU execution time for basic

operations (addition and multiplication) has been

improved tremendously. All the techniques have been

implemented using NVIDIA’s GPU based on fuzzy

International Conference on Communication, Computing & Systems (ICCCS–2014)

240

numbers. The method used for implemented was

midpoint-radius encoding and was compared with

traditional lower upper encoding. Gain of 2 to 20 was

obtained by preferring the former method over later.

Evaluation of the accuracy of the new representation

format is the extension of this work.

D. Fuzzy Logic Based Image Processing

The real time image processing using simple

algorithm is computationally intensive task even with

the moderate size images. With further increase in

image size it becomes really a difficult task. Anderson

et al. introduced parallelization of fuzzy logic based

image processing where edge computation for each

pixel being independent of all other pixels calculation is

made parallel. GPGPU implementation using CUDA

consisted of two CUDA kernels, one for rule firing and

another for defuzzification [10]. The CPU and GPU

implementations were then run over a series of different

image sizes. Maximum of 126 times speed

improvement to the original algorithm is achieved on a

NVIDIA 8800 Ultra GPU, and hence making the

processing of the algorithm real time. The most

significant advantages of GPGPU implementation

include its low price and ease of learning & using

CUDA API. Moreover, such a high speed allows

spending more time at higher level image processing

operations, e.g., object recognition or tracking, etc.

Various higher level processing operations can also be

performed on GPU in future using a generalized GPU

Mamdani FIS implementation.

Nowadays, with the quantitative increase in the

research and practice of clinical radiology and also with

the increased size of images, radiology to become

practical in real time it is important to implement the

image segmentation rapidly which is made possible by

this paper. The Iterative Relative Fuzzy Connectedness

(IRFC) segmentation is one of the families of fuzzy

connectedness algorithm [11]. In order to segment large

medical image data sets a parallel (IRFC) algorithm via

image foresting transform is developed and

implemented using NVIDIA’s CUDA on GPU. The two

major parts of the algorithm, (1) computation of fuzzy

affinity relations and (2) then computing the fuzzy

connectedness relations and tracking labels for objects

of interest are computed as two separate CUDA kernels

and a tremendous speed improvement could be

achieved. The GPU used is Tesla C1060 GPU and

speed increased by a factor ranging from 2.4 to 42.7

times. In future, automatic anatomy recognition in

radiology can be easily implemented on GPU.

Fuzzy Anisotropic Diffusion (FAD) algorithm

basically oriented for high resolution multidimensional

image/video is considered to be computationally

complex technique [12]. As fuzzy logic is inherently

parallel in nature [1], FAD can be easily implemented

in parallel on GPU using CUDA that replaces the recent

methods for enhancement, reconstruction, post

processing and classification procedure which are not

feasible for real time implementation. The experiments

are performed on both NVIDIA Tesla C2075 GPU

using CUDA and on quad-core Intel Xeon E5603 CPU

in the MATLAB environment. The implementation of

FAD algorithm using GPGPU is found to be less time

consuming, i.e., 140 times faster than that of MATLAB

implementation on CPU. GPGPU implementation has

also enhanced the resolution of the image and reduced

its computational complexity.

E. Fuzzy Clustering Algorithms

Fuzzy clustering is one of the unsupervised

learning procedures which are helpful in pattern

recognition applications. As the number of various

clustering parameters increases its computation

becomes more and more hard. Anderson et al.

investigated GPGPU in order to speed up clustering

algorithm as it involves various stages and components

that are data independent. In this implementation arrays

of input data sets are passed from CPU to GPU as a

texture [13]. To calculate the final updated center the

whole algorithm is divided into six different

subprograms and run on GPU. GPGPU implementation

of clustering is found to have better speed performance

by a factor of 2 at lower cost. Many heavy other

computations can be implemented using the basic idea

of this paper.

As discussed earlier, the author used simpler

algorithm and offloaded the task of fuzzy clustering to a

GPU, however, this approach is not much efficient for

large data sets. Therefore, later he incorporated non-

Euclidean distance metrics into fuzzy clustering on

GPU [14]. Here, NVIDIA 8800 GPU is used along with

32-bit Intel CPU. The results have shown that as the

number of samples are increased GPU outperformed

CPU with this technique. Computations speedup using

this method has improved by almost 2 orders of

magnitude. The work can, further, be extended to even

larger data sets.

F. Type-2 FLS

1) Interval type-2 FLS for robotic navigation

Type-2 FLSs are comprised of fuzzy sets whose

membership values are Type-1 membership functions

and called secondary membership functions. Fuzzy

computations such as rule implications, aggregation,

and defuzzification, etc., become very intensive for

ordinary computers [19]. Ngo et al. proposed the use of

GPGPU for implementation of IT2 FLS to achieve

obstacle avoidance behavior of robot navigation [15].

Various stages and components of the algorithm are

independent of each other, therefore, possible to be

implemented in parallel on GPUs. An FLS consisting of

two inputs (the extended fuzzy directional relations and

Fuzzy Systems using GPGPU – A Survey

241

range to obstacle) and one output (angle of deviation) is

implemented on NVIDIA Geforce GT540M graphics

card having 96 CUDA cores, 1GB of texture memory

along with Intel Core i3-2310M2, 1 GHz CPU.

Experimental results have shown that with the increase

in the number of rules and sample rate the GPU

outperforms the CPU. With 8192 sample rate and 512

rules GPU performs approximately 30 times faster than

that of CPU. In future, GPGPU based Type-2 FLS

implementations can be investigated for better

performance to solve engineering problems.

IV. CONCLUSION

In this paper, we have shown how GPGPU has

emerged out as a low cost solution to HPC. Tremendous

amount of speedups achieved using GPGPU in

implementations of different FLSs is the driving force

behind its popularity. In Mamdani FLS, a speed up of

approximately a factor of 178 has been obtained on

GPU as compared to CPU. FIS implementation runs

approximately 51 times faster on GPU than traditional

methods used on CPU. Implementation of fuzzy TSK

tuning on GPU surpassed the CPU by a factor of around

5 to 6 times. Fuzzy logic based image processing using

GPU attained 1.26 times speed improvement. GPU

based fuzzy connectedness image segmentation

algorithm achieved a speed up factor of 2 to 42 times.

The processing time of GPU based algorithm

implementation of FAD is 146 times less than

corresponding processing time achievable with

conventional CPU implementation. Speed of fuzzy

clustering on GPU increased over 2 orders of magnitude

and on incorporation of non-Euclidean metrics into

fuzzy clustering GPGPU has, further, increased the

speed up by two orders of magnitude. In fuzzy GPU,

gain of 2 to 20 has been obtained. An FLS designed on

GPU for robotic navigation with collision avoidance

behavior runs 30 times faster on GPU as compared to

CPU implementation.

 All these FLS implementations using GPGPU (not

big in numbers, at this point of time) and their

impressive outcomes are sufficient driving force for

researcher to investigate this low cost HPC paradigm

for more applications.

REFERENCES

[1] D. Anderson and S. Coupland, “Parallelisation of Fuzzy

Inference on a Graphics Processor Unit using the Compute

Unified Device Architecture, ” in Proceedings of the UK

Workshop on Computational Intelligence (UKCI’08), 2008,

pp. 1–6.

[2] J. M. Mendel, “Fuzzy Logic Systems for Engineering: A

Tutorial, ” Proceedings of the IEEE, vol. 83, no. 3, pp. 345–377,

1995.

[3] L. A. Zadeh, “The Concept of a Linguistic Variable and Its

Application to Approximate Reasoning”. Information Sciences,

vol. 8, no. 3, 1975, pp.199-249.

[4] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and

Applications. NY: Academic Press, 1980.

[5] O. Castillo and P. Melin, 3 Type-2 Fuzzy Logic. Springer, 2008.

[6] N. N. Karnik and J. M. Mendel, “Operations on Type-2 Fuzzy

Sets, ” International Journal on Fuzzy Sets & Systems, vol. 122,

pp. 327–348, 2001.

[7] N. Harvey, R. Luke, J. M. Keller, and D. Anderson, “Speedup of

Fuzzy Logic Through Stream Processing on Graphics

Processing Units, ” in IEEE Congress on Evolutionary

Computation, 2008, pp.3809–3815.

[8] B. B. Ferreira and A. J. Cruz, “A Parallel Method for Tuning

Fuzzy TSK Systems with CUDA, ” SBC–Proceedings of SB

Games, Brazilian Computer Society (SBC), pp. 5–8, 2012

[9] D. Defour and M. Marin, “Fuzzy GPU: A Fuzzy Arithmetic

Library for GPU, ” in Parallel, Distributed and Network-Based

Processing (PDP), 2014 22nd Euromicro International

Conference on. IEEE, 2014, pp.624–631.

[10] R. H. Luke III, D. Anderson, J. M. Keller, and S. Coupland,

“Fuzzy Logic based Image Processing using Graphics Processor

Units”, in IFSA/EUSFLAT Conference, 2009, pp.288–293

[11] Y. Zhuge, J. K. Udupa, K. C. Ciesielski, A. X. Falc˜ao, P. A.

Miranda, and R. W. Miller, “GPU-based Iterative Relative

Fuzzy Connectedness Image Segmentation, ” in SPIE Medical

Imaging. International Society for Optics and Photonics, 2012,

pp. 831 604–831 604.

[12] R. d. J. D. Coello, F. d. J. S. Lugo, A. C. Atoche, and J. O.

Aguilar, “GPU Implementation of Fuzzy Anisotropic

Diffusion.” in International Conference on Information and

Communication Technologies and Applications (ICTA), 2012

[13] D. T. Anderson, R. H. Luke, and J. M. Keller, “Speedup of

Fuzzy Clustering Through Stream Processing on Graphics

Processing Units, ” IEEE Transactions on Fuzzy Systems, vol.

16, no. 4, pp. 1101–1106, 2008.

[14] D. T. Anderson, R. H. Luke, and J. M. Keller, “Incorporation of

Non-euclidean Distance Metrics into Fuzzy Clustering on

Graphics Processing Units, ” in Analysis and Design of

Intelligent Systems using Soft Computing Techniques. Springer,

2007, pp. 128–139.

[15] L. T. Ngo, D. D. Nguyen, C. M. Luong et al., “Speedup of

Interval Type-2 Fuzzy Logic Systems based on GPU for Robot

Navigation, ” Advances in Fuzzy Systems, vol. 2012, p. 4, 2012,

pp. 1-11

[16] M. Khosla, R. K. Sarin, M. Uddin, and S. Singh, A. Khosla,

"Realizing Interval Type-2 Fuzzy Systems with Type-1 Fuzzy

Systems", in Cross-Disciplinary Applications of Artificial

Intelligence and Pattern Recognition: Advancing Technologies,

IGI Global, Hershey, Pennsylvania, USA, 2012, pp. 412--427.

[17] J. M. Mendel, R. I. John and F. Liu, “Interval Type-2 Fuzzy

Logic Systems Made Simple”, IEEE Transactions on Fuzzy

Systems, vol. 14, no. 6, 2006, pp.808–821.

[18] S. Singh, S. Singh, V. K. Banga, D. Chauhan, “CUDA for

GPGPU Applications - A Survey”, in Proc. National Conference

on Contemporary Techniques & Technologies in Electronics

Engineering, Murthal, Sonepat, India, March, 2013,

pp.189--192.

[19] S. Singh, J. S. Saini, V. Mutneja, N. Gill, “Mobile Robot

Navigation using IT-2 FLS”, in Proc. IEEE National Conference

on Applications of Intelligent Systems (AIS-2008), Sonepat,

India, March, 2008.

