
Smart Transmitters and Receivers for 

Underwater Free-Space Optical

Communication – A Review

Navneet Kaur Bajwa1 and Vishal Sharma2

1,2Department of Electronics & Comm. Engineering, 
Shaheed Bhagat Singh State Technical Campus, Ferozepur–152004, Punjab, India 

E-mail: 1navvbajwa@gmail.com, 2er_vishusharma@yahoo.com

Abstract—New communication systems and 

networking protocols are required to manage the 

increasing number of unmanned vehicles and devices 

being positioned underwater. The present underwater 

communication systems comprise of traditional point to 

point links and have rigid pointing and tracking needs. 

Underwater free space optical communication is 

determined to augment the short range, mobile and multi-

user communication in future underwater systems. In this 

paper, we review compact smart transmitters and 

receivers for underwater free space optical 

communication. The transmitters transmit highly 

directional beams and have separately addressable LEDs 

for electronic switched beam-steering and have co-

positioned receivers to estimate the water quality by 

collecting back scattered light. The receivers have 

sectioned wide range of view and are able to evaluate the 

angle of arrival of signals. They collaborate together to 

form a promising technology for modern networking 

schemes in the stream of unmanned devices underwater. 
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I. INTRODUCTION

Underwater communication is of great importance 

for military, industry and scientific fields. The devices 

and equipments deployed underwater require data rates 

in the range of few to tens of Mbps. A wireless link is 

desirable in many situations although fiber optic or 

copper cablings are used for bulky and immobile 

devices. Free space optical communication is 

considered as a promising alternative as it overcomes 

low data rates, high latencies and multipath issues 

offered by prevailing acoustic communication [27],[29]. 

FSO system has also provided a promising solution to 

the “last mile problem” [26]. 

In recent years, free space optical communication 

has glimpsed and increase in interest from 

advancements in blue-green sources and detectors [1], 

[2], [3], [4], [5], since blue-green wavelengths of 

electromagnetic spectrum are not much weakened 

underwater. Both Laser-based systems and LED-based 

systems are employed underwater by taking in account 

their various advantages. While Laser-based systems 

offer extended ranges of communication, high data rates 

of information transfer and low latencies [7], LED-

based systems are employed for their low cost, low 

power and compactness. Certain internal and external 

parameters of FSO communication systems have to be 

considered as the environmental changes are inevitable 

during the designing of various components [28]. 

Underwater communication, especially on mobile 

platforms is considered to form point to point links and 

require definite pointing and tracking. Systems that use 

collimated laser links and have dedicated gimbal 

systems generally employ such links. There are systems 

that use very large aperture (approximately 20 inch) 

photomultiplier tubes (PMTs) that enlarge the receiver 

field of view (FOV) [2]. There are a few recent studies 

exploring possible techniques and systems for 

underwater optical communication [25]. 

Large area PMTs offer a disadvantage of being 

expensive and bulky. Hence, compact systems are 

desired which do not have much volume budget or 

energy budget for sophisticated pointing and tracking. 

Smart antennas are used in traditional RF wireless 

systems, which make them capable of signal processing 

to provide angle of arrival information and broadcast 

beam-forming. In indoor optical wireless 

communication, several antennas with spatial diversity 

and angular diversity are employed for non-line-of-sight 

communications, ambient light rejection, electronic 

tracking and pointing, corresponding localization, and 

multi-hop networking. Energy efficiency of the modern 

networks is also very much required [30]. It is obvious 

to consider the benefits of such techniques being 

extended to the underwater environment [1]. 

This paper is divided into three sections. 

Introductory concepts and advantages of underwater 

free space optical communication are discussed in 

section 1 followed by section 2, in which we analyse an 

optical front-end for underwater free-space optical 

communication. The front end introduces the notion of 

smart receivers and transmitters. The smart transmitters 

are able to estimate and evaluate the water quality from 

its backscattered light collected by its co-located 

receiver. The smart receivers have segmented wide 

FOV and are able to detect angle of arrival of signals in 

order to adapt and align FOV towards the wanted 

signal. Finally, section 3 represents the conclusion. 
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 Fig. 1  A General Front end Design of Transmitter and Receiver [21].  

II. BENEFITS, BACKGROUND AND DESCRIPTION OF 

SMART OPTICAL SYSTEMS

A. Benefits of Smart Optical Systems for UUVs  

Focus of this review paper is the concept of smart 

transmitters and receivers that allow technology for 

coordinated sensing and communicating.  

As a reference, examine smart optical transmitters 

and receivers that can evaluate and estimate the obvious 

optical effects of water, transmit a beam of light in a 

fixed direction, and find out the direction of the light 

beam and peculiarity of the light beam that is being 

received. Gain and power of transmission of receiver 

during detection and acquisition of another platform can 

be changed by evaluating water quality.  

Fig. 2  Multi user Reception System Using three Nodes – A,B and C; 

A and C are Transmitting Nodes while B is Receiving Node [1]. 

Fig. 3  Optical Backscatter Estimation and Evaluation at the Node B 

from its co Located Transmitter [1] 

Knowledge of device orientation, its identity, and 

its relative angle can be utilized to localize and evaluate 

the relative positions of devices. Concise illustrations of 

possible benefits are listed in sub-sections below: 

1) Non-mechanical Pointing and Tracking on a 

Moving Underwater Device 

An optical transmitter or receiver mounted on a 

device can go in and out of sighting with another 

stationary or fixed platform. This process depends upon 

the state of sea and commands of the underwater 

device. An optical front end capable of varying its 

effective FOV, detecting angle of arrival at its receiver 

and electronically direct its output beam, can possibly 

maintain a communications link in such an 

environment. Furthermore, one can use signal diversity 

expertise to improve and enhance signal reliability [1]. 

2) Maintaining Link with a Stationary Node as an 

Underwater Device Drives by 

It is quite difficult for underwater devices to 

maintain a precise relative position. The ability to 

interrogate and obtain information from a stationary 

sensor node as a device drives by can add significant 

operational capability. Thus, a quasi-omni-directional 

receiver is valued which is able to continually adapt its 

FOV and optical power.  

3) Providing Sensory Information to Underwater 

Devices 

In a swarm environment, localization information 

can be collected from angle of arrival information as 

different nodes communicate with one other. This 

information can be transmitted to the device to augment 

its other sensory data for navigation and collision 

abstention purposes. A smart optical front-end can also 

contribute to other sensory information such as water 

quality measurements obtained from the 

communications link [1]. 

Fig. 4  Electronic Switched Pointing and Tracking, B can Sense the 

Direction of C and point [1] 

4) Duplex Multi-user System 

Each transceiver is composed of a smart receiver 

and a smart transmitter which allow synchronous 

reception from two non co-located transmitters. Since 

each transmitter is CDMA coded, the receiver at one 

location is also capable of associating data streams of 

another smart receiver with different location by its 

corresponding directions [1]. Whenever two smart 
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receivers lie on the same line, the CDMA code still 

permits for dividing the two transmit streams at the 

receiver on the first smart receiver. 

In a mesh network scenario, as illustrated in Fig. 2, 

node A and node C are not in the range of each other. 

Supposing localization data from angle of arrival is kept 

at each node, node B can broadcast messages between 

the node A and the node C through a hop network. If B 

is a mobile node, it can be placed to adequately expand 

the optical communication range between A and C 

when needed [1]. 

5) Optical Backscatter Estimation and Evaluation to 

Assess Water Quality 

The bidirectional system delivers a way for a 

receiver to observe optical backscattering while its  

co-located transmitter is active. Background noise and 

un-modulated light are isolated based on the modulated 

schemes used. Using volume scattering information, an 

estimation of the attenuation coefficient can be made 

found on the measured amount of backscatter. Also, 

SNR measurements can be obtained from the tx/rx 

signals [1].  

6) Electronic Switched Pointing & Tracking 

The transmitter receives the information about 

angle of arrival from its co located receiver. The 

transmitter can hence switch to a light beam which 

points its output in the direction of to be received beam 

to optimize the link [1]. 

B. Background 

1) Underwater Optical Channel 

The underwater free-space optical channel is not 

the same as the atmospheric channel. Although, there 

have been detailed studies on the optical properties of 

water and remote sensing applications. Thus, the 

underwater channel from an optical communication 

prospect is still very much unknown [8], [9], [10]. 

From an optical communications reference, the 

three important properties are beam attenuation 

coefficient, volume scattering function, and albedo. 

Light interacts with water and the materials suspended 

and dissolved in it by two separate ways: absorption 

and scattering [1]. Absorption is the change of 

electromagnetic radiation into other forms of energy 

such as heat. Scattering is the redirection of 

electromagnetic radiation. 

Photons change their course of direction by means 

of reflection, refraction, and diffraction. In small 

particles, Mie and Rayleigh scattering control the 

magnitude and direction of the scattered photon [8]. 

This reliance can be described by a phase function 

which is usually strongly forward peaked in water. 

There can also be a significant backscattered 

component [9]. 

Beam attenuation coefficient can be defined as the 

ratio of energy absorbed or scattered from an incident 

power per unit distance. Absorption coefficient a( ) and 

scattering coefficient b( ) add up to give the value of 

beam attenuation coefficient. It has units of m-1 and can 

be given by the relation: 

c ( ) = a( ) + b( )  (1) 

Beer’s law defines the attenuation of an optical 

signal as a function of attenuation coefficient and 

distance d as [1]: 

I = I0 + e – c ( ) d  (2) 

Single-scattering albedo is defined as the ratio of 

scattering coefficient to beam attenuation coefficient 

and indicates the possibility that a photon will be 

scattered rather than imbibed [1]. It is a unit less term 

and is represented by 0. It is defined as  

0 = b( ) / c( )  (3) 

Highly scattering environments yield albedo near 1, 

and highly absorbing environments yield albedo near 0. 

Single scattering albedo is also known as the likelihood 

of photon survival because scattered photons are not 

changed to other forms of energy. 

Another term known as Volume scattering function 

(VSF) is defined as the fraction of scattered power ( s) 

to incident power ( i) as a function of direction 

scattered into a solid angle . It has units of m 1sr 1

and is denoted by ( , ) [1]. 

2) Existing Systems and Methods 

a. In underwater optical communication: 

Photomultipliers tubes (PMTs) are used to achieve 

wide FOV since they have very large apertures. They 

have an advantage of short rise time and wide 

spectral response, not to forget  

the blue green window used in optical 

communication. PMTs also have a wide extent of 

aperture sizes ranging from 10 mm to 500 mm (20 

inches) in diameter [1]. These are utilized in 

underwater optical communication systems to elude 

pointing and tracking needs [2]. 

b. Modulating retro-reflector: A modulating retro-

reflector can be used to address power, size, and 

pointing requirements at the receiver [15]. A 

modulating retro-reflector strikes out the 

requirement for a transmitting laser on a platform 

containing data and reduces the pointing 

specifications by retro-reflecting the modulated 

light again to the communicating source. 

c. Indoor optical wireless: There has been some 

exploration in the field of indoor optical wireless 

in the work of spherical photodiode arrays for 

enlarging FOV [17]. Initial prototypes have been 

built having depressed attenuation channels such 

as the indoor optical wireless channel [18]. An 
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improvement in range by a diminution in path 

loss, multipath distortion, and background noise 

can be made possible by optimally combining the 

photodiode outputs [20]. 

d. In RF communication: Terrestrial RF 

communications have gained from recent growth 

in spatial diversity and smart antennas. Mobile 

communications also give an idea about some of 

the implementations workable with an antenna. 

However, in optical systems, we do not have the 

RF implementation of being able to use cogent 

beam-forming or phased arrays [1]. 

C. Smart Transmitter 

The smart transmitter has the following 

characteristics [1]: 

Electronic switched beam-steering. 

Increased directionality. 

The LED (Light Emitting Diode) is a 

semiconductor device that produces a relatively narrow 

spectrum light, dependent on the material used with a 

particular brightness dependent on the forward bias 

current applied. The speed at which an LED can be 

modulated is usually limited by the die size for high 

brightness LEDs. This implies a trade off between 

power and speed, since larger die size provides higher 

brightness [21], [22]. 

The smart transmitter is composed of a shortened 

hexagonal pyramid with a large number of LEDs. Each 

LED in the transmitter is coupled with its own lens that 

converge the extensive FOV of the LED to a limited 

beam in a particular direction. Each LED is uniquely 

addressed and driven, which allows the modulator to 

select an output direction. This constructs the procedure 

for a basic switched beam-steering at the transmitter 

side [1]. 

For a multi-user environment it is mandatory to 

provide a multiple access to the medium. LEDs at 

different wavelengths can be used, but receivers would 

require multiple filters. Time 

Division Multiple Access would thus need 

synchronous clocks [1]. 

D. Smart Receiver 

Like smart transmitter, the goal of the smart 

receiver is to develop a quasi omni-directional system 

to reduce pointing and tracking requirements generally 

associated with free-space optical systems. 

Further, to potentially reduce pointing and tracking 

requirements, this design also potentially allows one to 

estimate and evaluate angle of arrival. This can be used 

in combination with a CDMA type multiple access 

system. Thus, the signals from distinct platforms can be 

differentiated from their coded signals and have a 

demonstration of their location. This increases the 

number of applications and includes applications such 

as localization, navigation assistance, and mesh 

networking. 

Using multi input multi output (MIMO) techniques, 

this optical approach possibly also imparts angle and 

spatial diversity for enhancing the representation of 

point-to-point links [1]. 

The smart receiver has the following 

characteristics: 

Increased field of view 

Angle of arrival estimation 

There are many design considerations that have to 

be kept in mind due to their significance to underwater 

free-space optical communication. First of all, unlike 

the optical front-end arrays in terrestrial free-space 

optics and indoor optical wireless use either photodiode 

arrays with no lenses, the smart receivers that are used 

in the underwater communication need to be mounted 

with an array of lens [1]. This is done to estimate the 

angle of arrival of signals being focused on the receiver. 

It is always been the requirement of free space 

optical communication underwater to have an improved 

FOV and is considered one of the primary issues to 

work upon. A significant improvement in the FOV can 

be made by using quasi omni-directional lenses at the 

receiver side. 

A smart transmitter can perform evaluation of the 

water quality by utilizing its backscattered return light 

and a co-located receiver to estimate the attenuation 

coefficient (channel state) of the channel at the 

transmitter. This expertise has the benefit of knowing 

the water quality without counting on a back-channel 

for back-telemetry or even a different instrumentation 

sensor [1]. Knowing this information allows the 

transmitter to, for example, adaptively change its 

transmitting power, data rate, code rate, or other 

parameters. The question to this expertise is that the 

return beam from backscatter, depending on the 

attenuation coefficient of the channel, can be as low as 

roughly six orders of magnitude below the output power 

of the transmitter [1]. To some degree, this can be 

elucidated by a few methods including: sending a 

higher power training sequence for the cause of 

enlarging the amount of backscattered light used for 

estimation and evaluation, the receiver associated the 

captured light to the genuine information being 

transmitted, or even temporarily increasing the receiver 

gain. Expertises such as the use of a lock-in amplifier 

can be used and are aided by the fact that the transmitter 

and the backscatter-receiver are co-located [1], [23]. 
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III. CONCLUSION

The ease and importance of executing the use of a 

smart transmitters and receivers for free-space 

underwater optical communication systems are 

presented in this work. An increased field of view and 

the capability to evaluate the angle of arrival by the 

smart receiver along with the estimation of water 

quality by measuring the optical backscatter from 

transmitted light by the transmitter is depicted. This 

smart transceiver proposal reduce pointing and tracking 

needs, which otherwise pose a major problem with the 

communication platforms used by the unmanned 

devices underwater. The main focus of this work is to 

identify the importance and future need of promising 

non-traditional network technologies in the swarm of 

unmanned devices underwater. 
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