
Network Programmability Using

POX Controller

Sukhveer Kaur1, Japinder Singh2 and Navtej Singh Ghumman3

1,2,3Department of Computer Science and Engineering,
SBS State Technical Campus, Ferozepur, India

E-mail: 1bhullarsukh96@gmail.com, 2japitaneja@gmail.com,
3navtejghumman@yahoo.com

Abstract—POX is a Python based open source

OpenFlow/Software Defined Networking (SDN)

Controller. POX is used for faster development and

prototyping of new network applications. POX controller

comes pre installed with the mininet virtual machine.

Using POX controller you can turn dumb openflow

devices into hub, switch, load balancer, firewall devices.

The POX controller allows easy way to run

OpenFlow/SDN experiments. POX can be passed different

parameters according to real or experimental topologies,

thus allowing you to run experiments on real hardware,

testbeds or in mininet emulator. In this paper, first section

will contain introduction about POX, OpenFlow and SDN,

then discussion about relationship between POX and

Mininet. Final Sections will be regarding creating and

verifying behavior of network applications in POX.

Keywords: POX, SDN, Open Flow, Mininet

I. INTRODUCTION

SDN separates the control plane of networking

device (switch/ router) from its data plane, making it

possible to control, monitor, and manage a network

from a centralized controller.

Fig. 1 Decoupled Control and Data Plane

Software Defined Networking [1] tries to simplify

the development of new applications by separating the

data plane from control plane. Control plane is also

called controller. This controller has a global view of

the network and controls the flow through the network.

Since most intelligence is now transferred to the

controller, the switch only perform the actions that the

controller requests. This makes the switches very

simple and inexpensive. But in traditional networks

(Fig. 1), each device has vendor-specific operating

system to control the data plane. Additional applications

can be implemented on top of this operating system.

POX [2] is an open source controller for

developing SDN applications. POX controller provides

an efficient way to implement the OpenFlow protocol

which is the de facto communication protocol between

the controllers and the switches. Using POX controller

you can run different applications like hub, switch, load

balancer, and firewall. Tcpdump packet capture tool can

be used to capture and see the packets flowing between

POX controller and OpenFlow devices.

Communication between the controller and the

switches is carried by communication protocol such as

OpenFlow [3], ForCES [4] (Fig. 2). OpenFlow is the

most popular standard protocol used in SDN. OpenFlow

switches behave as dumb forwarding devices. They are

unable to perform any actions without programmed by

the controller.

Fig. 2 POX Controller

When a switch is powered on, it will immediately

connect to an OpenFlow controller. Initially, the flow

table of the switches is empty. When a packet arrives at

a switch, it does not know, how this packet is to be

handled. Then it send packet-in message to the

controller. To handle the packet, controller inserts a

flow entries in flow table of switch. Flow entry in flow

table contains three parts, rule(match field), action,

counters. For each packet, that has to pass through a

switch, a flow entry will have to be installed so that the

switch can forward this traffic without further

intervention of the controller [5]. Flow modification

messages are sent to the switches to install the flow

entries in flow table (Fig. 3). Once these are installed,

traffic belonging to this flow will be handled by the

switches themselves.

Network Programmability Using POX Controller

135

Fig. 3 SDN Architecture

II. POX AND MININET

Mininet is an emulation tool that allows running a

number of virtual hosts, controllers, switches, and links.

It uses container based virtualization to make a single

system act as a complete network. It is a simple, robust

and inexpensive network tool to develop and test

OpenFlow based applications. Mininet [6] can create a

complex network topology for testing purposes, without

configuring the physical networks. It supports custom

topologies. It supports simple and extensible Python

API for network creation and testing.

Mininet combines the desirable features of

simulators, testbeds and emulators. Mininet is cheaper,

easily available, and quickly reconfigurable as

compared to testbeds such as GENI [7], VINI [8], and

Emulab [9]. It runs real, unmodified code as compared

to simulators such as EstiNet [10], ns-3 [11]. The code

that is to be developed in Mininet, can also run in real

network without any modifications. It supports large

scale networks containing large number of virtual hosts

and switches. In short, Mininet's virtual hosts, switches,

links, and controllers are just like the real thing. They

are just created using software rather than hardware.

Mininet have built-in Controller classes to support

different network controllers such as reference

controller (controller), ovs-controller [12] and less used

NOX Classic [13].

You can choose controller by invoking ‘mn’

command.

mn --controller ref

mn --controller ovsc

mn --controller nox

Five most important open source controllers (Table

I) that can be used by Mininet remotly are POX, Ryu

[14], Trema [15], FloodLight [16], and OpenDaylight

[17]. There are number of other SDN controllers like

NOX (C++) , Jaxon (Java) [18], Beacon (Java) [19],

Maestro (Java) [20] which are not considered because

they are deprecated and poorly documented.

A. POX

The POX is a python based SDN controller that is

inherited from the NOX controller.

B. Ryu

Ryu is a component-based SDN controller. Ryu has

a collection of built-in components. These components

can be changed, extended and composed for creating new

customized controller applications. Any programming

language can be used to develop a new component.

C. Trema

Trema is a framework for Ruby and C that builds

software platform for OpenFlow developers. It is easy

to use Open Source free software.

TABLE 1 DIFFERENT SDN CONTROLLERS

 POX Ryu Trema Floodlight Open Day

Light

Language

Support

Python Python C

Ruby

Java Java

OpenFlow

Support

v1.0 v1.0

v1.2

v1.3

v1.0 v1.0 v1.0

OpenSource Yes Yes Yes Yes Yes

GUI Yes Yes No Web GUI Yes

REST API No Yes No Yes Yes

Platform

Support

Linux

Mac

Windows

Linux Linux Linux Linux

Mac

Windows

D. Floodlight

The Floodlight Open SDN Controller is an Apache

licensed, enterprise class, Java based OpenFlow

controller. FloodLight controller contains a number of

modules, where each module provides a service to the

other modules and to the control logic application

through simple Java API or a REST API.

E. OpenDayLight

OpenDayLight is an open source project. The goal

of the project is to create robust code that covers major

components of the SDN architecture, to gain acceptance

among the vendors and users, and to have a growing

community that contributes to the code and uses the

code for commercial products.

To use POX controller, type the following

command in terminal window.

 # python pox.py log.level –DEBUG

Using

DEBUG m

additional

launch Min

hosts run th

mn

In this

controller.

on the sam

command

parameters

‘127.0.0.1’

command

controller r

mn –

But if

(suppose 1

mn -

You c

defined top

 # mn

controller r

This w

different o

are shown

Command

mn

--topo single

--mac

--arp

--switch ovs

--controller

remote

--ip

There

using POX

hub, switch

boxes such

contains sim

A. Hub A

If a flo

the packet

device, the

shown in F

When host

first sends

Internati

this comm

mode. DEBU

messages ex

ninet with def

he following c

s case switch

If you want

me Mininet ma

with the c

s set to

’ will be used

will connect

running on an

–controller=re

f POX contr

72.24.0.1), th

--controller=re

can create co

pologies using

n –mac --to

remote

will create 5 h

ptions that ca

in Table II.

TABLE 2

ds

run Mininet

e, 5 create 1 sw

makes mac

hosts

install static

sk use Open v

use remote

remote cont

III. POX

are various a

X. The networ

h, and router o

h as firewall

mple hub logi

Application

ow entry in flo

t that arrives

en that device

Fig. 4, all hos

t h1 wants to

s a packet to

ional Conferen

mand POX c

UG mode a

xchanged wit

fault topology

command.

will connect

to use POX

achine you ne

controller op

‘remote’. L

d as ip addre

t the switche

nother termina

emote, ip=127

roller is on

hen run the fol

emote, ip=172

omplex pre d

g Mininet. For

po single,5

hosts and 1 sw

an be used wi

MININET OPTION

Descripti

t

itch with 5 hosts

c address same

c ARP entries

Switch

controller

troller ip address

X APPLICATION

applications th

rk application

or could be so

or load bala

ic and applica

ow table conta

at specific p

e act like a hu

sts belong to

send a packet

o forwarding

nce on Comm

controller run

allows displa

th the switch

y of 1 switch a

to the defaul

controller run

eed to run the

ption having

Loopback ad

ess. The follo

s to remote

al.

7.0.0.1

different ma

lowing comm

2.24.0.1

defined or cu

r example

--switch ovs

witch topology

ith ‘mn’ comm

NS

ion

as node numbe

NS

hat can be cr

could be a si

ophisticated m

ancer. This se

ation code.

ains action to

port of forwa

ub. In the topo

the same netw

t to host h4, th

device at po

munication, Co

136

ns in

ay of

h. To

and 2

lt ovs

nning

‘mn’

g the

ddress

owing

POX

achine

mand

ustom

sk --

y. The

mand

er on

reated

imple

middle

ection

flood

arding

ology

work.

hen it

ort 1.

Whe

flow

all p

spec

pack

wind

expe

contr

cons

and 5

the p

run t

Listi

omputing & Sy

en a packet arr

w entry. When

ports except th

ified in flow

ket is forwar

dow, run the

eriment topolo

mn --mac

roller remote

Fig. 4 S

Listing 1 Hub

This will l

sisting of 1 Op

5 hosts. The P

provided VM i

the hub code

ing 1 by using

ystems (ICCC

rives at port 1

n match is fou

he incoming

w entry. If no

rded to cont

e following

ogy.

c --topo sin

Single Switch, 5 H

b Application

launch Mini

penFlow switc

POX controller

image. From a

(code file nam

the following

CS–2014)

1, then it matc

und, then it is

port accordin

o match is f

troller. In on

command to

ngle,5 --switc

Hosts Topology

Code

inet network

ch, 1 OpenFlow

r comes pre-in

another termin

me is ‘hub.py

g command.

ched against

s flooded to

ng to action

found, then

ne terminal

 create an

ch ovsk --

k topology

w controller

nstalled with

nal window,

y’) shown in

Network Programmability Using POX Controller

137

python pox.py log.level --DEBUG hub

This will launch the POX controller in verbose mode

for debugging purposes and also run the hub application.

B. Understanding Hub Application Code

Before implement a hub application, first you need

to import a core object that show a connection between

modules in POX and OpenFlow library that is used for

access a number of primitives.

1. ofp_action_output class: This class specifies a

switch port, where you want to send the

packet. There are various "special" port

numbers. For example in the hub application,

‘OFPP_FLOOD’ which sends the packet to all

ports except the incoming port.

2. ofp_flow_mod OpenFlow message: This

message is send from controller to switch to

insert flow table entry. Flow table entries will

be matched against fields of incoming packets

and then perform some actions on matching

packets.

3. connection.send(...): Controller sends an

OpenFlow message to a switch by using this

function. A ‘ConnectionUp’ event is fired,

When a connection to a switch starts. The

above code call a ‘_handle_ConnectionUp ()’

function that contains hub logic.

4. launch(): The launch() function is

automatically called, when the application is

started. The application registers all event

listeners in this function.

5. dpid_to_str(): Each OpenFlow switch has a

unique 64 bit datapath ID (DPID) and that is to

be passed to controller from switch during

handshaking. 48 bits are Ethernet address and

16 bits are implementation defined. It is a

decimal number that is not easy to understand.

POX define a pox.lib.util.dpid_to_str ()

function to format DPIDs.

IV. VERIFYING HUB BEHAVIOR

To verify hub behavior, Start a topology that

contains single switch and 5 hosts and run it with POX

controller. From host h1 sends icmp packets to the host

h3. Here all the hosts see the same exact traffic which is

the default behavior of hub. Launch an ‘xterm’ for each

host and view the traffic simultaneously for each host

by using ‘tcpdump’ (Fig. 5). For this purpose start 5

xterm terminals, one for each host.

The command for viewing traffic is “tcpdump”. Pass

the option ‘-XX’ for verbose output, ‘-i’ for specifying

the interface for listening, ‘-n’ for no name resolution.

Fig. 5 Tcpdump Outputbefore Running 'Ping' Utility

Now from host h1 ping to the host h3 at address

10.0.0.3. Ping packets will first go to the controller,

which will then flood the packets to all hosts except the

interface which sent the packet. You will see identical

ICMP and ARP packets related to the ping in all the

terminals. (Fig. 6) thus verifying the behavior of hub.

Fig. 6 Tcpdump Output after Running 'Ping' Utility

V. CONCLUSION

POX controller can be used to convert cheap, dumb

merchant silicon devices into hub, switch, router or

middleboxes such as firewall, load balancer. POX is

also great tool for deploying and testing SDN

applications. Its great strength lies in that it can be used

with real hardware, in testbeds or with Mininet

emulator. The POX controller has some great features

but does not have GUI interface. Open Flow v1.0 is

most widely used version. Open Flow version 1.3 will

International Conference on Communication, Computing & Systems (ICCCS–2014)

138

be the next version that is supposed to be widely

implemented in products. POX supports only v1.0. So

support for v1.3 could be future challenge area.

The network applications created in POX controller can

not be used with other controllers. Porting of POX

network applications to other controllers can be another

research area.

ACKNOWLEDGMENT

The authors would like to thank Mr. Vipin Gupta

from U-Net Solutions, Moga, India for his valuable

assistance for this work.

REFERENCES

[1] Nunes, B.; Mendonca, M.; Nguyen, X.; Obraczka, K.; Turletti,

T., "A Survey of Software-Defined Networking: Past, Present,

and Future of Programmable Networks," Communications

Surveys & Tutorials, IEEE , vol.PP, no.99, pp.1,18.

[2] Fernandez, Marcial. "Evaluating OpenFlow controller

paradigms." In ICN 2013, The Twelfth International Conference

on Networks, pp. 151-157. 2013.

[3] Lara, Adrian, Anisha Kolasani, and Byrav Ramamurthy.

"Network innovation using openflow: A survey." (2013): 1-20.

[4] Zhou, Lei, Ligang Dong, and Rong Jin. "Research on ForCES

Configuration Management Based on NETCONF." Information

Technology Journal 13, no. 5 (2014).

[5] Kim, Hyojoon, and Nick Feamster. "Improving network

management with software defined networking."

Communications Magazine, IEEE 51, no. 2 (2013): 114-119.

[6] Lantz, Bob, Brandon Heller, and Nick McKeown. "A network in

a laptop: rapid prototyping for software-defined networks." In

Proceedings of the 9th ACM SIGCOMM Workshop on Hot

Topics in Networks, p. 19. ACM, 2010.

[7] GENI at http://www.geni.net/

[8] VINI at http://www.fp7-federica.eu/pres_eventi/20081014-vini-

bavier.pdf.

[9] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T.

Stack, K. Webb, and J. Lepreau. Large-scale virtualization in the

emulab network testbed. In USENIX 2008 Annual Technical

Conference, pages 113-128. USENIX, 2008.

[10] Wang, Shie-Yuan, Chih-Liang Chou, and Chun-Ming Yang.

"OpenFlow Controllers over EstiNet Network Simulator and

Emulator: Functional Validation and Performance Evaluation."

[11] Henderson, Thomas R., Mathieu Lacage, George F. Riley, C.

Dowell, and J. B. Kopena. "Network simulations with the ns-3

simulator." SIGCOMM demonstration (2008).

[12] OVS controller at http://yuba.stanford.edu/~casado/of-sw.html.

[13] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.

McKeown,and S. Shenker. Nox: towards an operating system

for networks. ACM SIGCOMM Computer Commun. Review,

38(3):105–110, 2008.

[14] Shalimov, Alexander, Dmitry Zuikov, Daria Zimarina, Vasily

Pashkov, and Ruslan Smeliansky. "Advanced study of

SDN/OpenFlow controllers." In Proceedings of the 9th Central

& Eastern European Software Engineering Conference in

Russia, p. 1. ACM, 2013.

[15] Trema at https://github.com/trema/trema

[16] Kim, Hyojoon, and Nick Feamster. "Improving network

management with software defined networking."

Communications Magazine, IEEE 51, no. 2 (2013): 114-119.

[17] OpenDayLight at http://www.opendaylight.org/

[18] “Jaxon,” accessed 11-June-2013 at http://jaxon.onuos.org/

[19] Erickson, David. "The beacon openflow controller." In

Proceedings of the second ACM SIGCOMM workshop on Hot

topics in software defined networking, pp. 13-18. ACM, 2013.

[20] EugeneNg, ZhengCai AlanL Cox TS. "Maestro: Balancing

Fairness, Latency and Throughput in the OpenFlow Control

Plane."

