Network Programmability Using
POX Controller

Sukhveer Kaur', Japinder Singh” and Navtej Singh Ghumman’
! '2’3Department of Computer Science and Engineering,
SBS State Technical Campus, Ferozepur, India
E-mail: ' bhullarsukh96@gmail.com, *japitaneja@gmail.com,
Snavtejghumman@yahoo.com

Abstract—POX is a Python based open source
OpenFlow/Software Defined Networking (SDN)
Controller. POX is used for faster development and
prototyping of new network applications. POX controller
comes pre installed with the mininet virtual machine.
Using POX controller you can turn dumb openflow
devices into hub, switch, load balancer, firewall devices.
The POX controller allows easy way to run
OpenFlow/SDN experiments. POX can be passed different
parameters according to real or experimental topologies,
thus allowing you to run experiments on real hardware,
testbeds or in mininet emulator. In this paper, first section
will contain introduction about POX, OpenFlow and SDN,
then discussion about relationship between POX and
Mininet. Final Sections will be regarding creating and
verifying behavior of network applications in POX.

Keywords: POX, SDN, Open Flow, Mininet

I. INTRODUCTION

SDN separates the control plane of networking
device (switch/ router) from its data plane, making it
possible to control, monitor, and manage a network
from a centralized controller.

Apps || Apps || Apps || Apps
Specialized S—d \ i ” i PP ” P |
Applications i
| Northbound API
Specialized i'r
Control Plane Control Plane
.
O A
Specialized — Southbound OpenFlow Protocol
Hardware —_— r
——— .
7 Dumb networking Devices OpenFlow Switches

Vendor SpecificTraditional
intelligent networking devices

Software Defined Networking

Fig. 1 Decoupled Control and Data Plane

Software Defined Networking [1] tries to simplify
the development of new applications by separating the
data plane from control plane. Control plane is also
called controller. This controller has a global view of
the network and controls the flow through the network.
Since most intelligence is now transferred to the
controller, the switch only perform the actions that the
controller requests. This makes the switches very
simple and inexpensive. But in traditional networks
(Fig. 1), each device has vendor-specific operating

system to control the data plane. Additional applications
can be implemented on top of this operating system.

POX [2] is an open source controller for
developing SDN applications. POX controller provides
an efficient way to implement the OpenFlow protocol
which is the de facto communication protocol between
the controllers and the switches. Using POX controller
you can run different applications like hub, switch, load
balancer, and firewall. Tcpdump packet capture tool can
be used to capture and see the packets flowing between
POX controller and OpenFlow devices.

Communication between the controller and the
switches is carried by communication protocol such as
OpenFlow [3], ForCES [4] (Fig. 2). OpenFlow is the
most popular standard protocol used in SDN. OpenFlow
switches behave as dumb forwarding devices. They are
unable to perform any actions without programmed by
the controller.

POX Controller
Y
OpenFlow
Protocol
Flow Table
Rule :Aclion : Counters

Rule :Action l Counters

OpenFlow Switch

Rulc !Action ! Counters

Fig. 2 POX Controller

When a switch is powered on, it will immediately
connect to an OpenFlow controller. Initially, the flow
table of the switches is empty. When a packet arrives at
a switch, it does not know, how this packet is to be
handled. Then it send packet-in message to the
controller. To handle the packet, controller inserts a
flow entries in flow table of switch. Flow entry in flow
table contains three parts, rule(match field), action,
counters. For each packet, that has to pass through a
switch, a flow entry will have to be installed so that the
switch can forward this traffic without further
intervention of the controller [5]. Flow modification
messages are sent to the switches to install the flow
entries in flow table (Fig. 3). Once these are installed,
traffic belonging to this flow will be handled by the
switches themselves.

Network Programmability Using POX Controller

POX OpenFlow Controller

A

OpenFlow
Protocol

match found in flow tables
Response

Contact controller when no

Packet out

Backetin Flow Tables |---p| Execute Actions

OpenFlow Switch

Fig. 3 SDN Architecture

II. POX AND MININET

Mininet is an emulation tool that allows running a
number of virtual hosts, controllers, switches, and links.
It uses container based virtualization to make a single
system act as a complete network. It is a simple, robust
and inexpensive network tool to develop and test
OpenFlow based applications. Mininet [6] can create a
complex network topology for testing purposes, without
configuring the physical networks. It supports custom
topologies. It supports simple and extensible Python
API for network creation and testing.

Mininet combines the desirable features of
simulators, testbeds and emulators. Mininet is cheaper,
easily available, and quickly reconfigurable as
compared to testbeds such as GENI [7], VINI [8], and
Emulab [9]. It runs real, unmodified code as compared
to simulators such as EstiNet [10], ns-3 [11]. The code
that is to be developed in Mininet, can also run in real
network without any modifications. It supports large
scale networks containing large number of virtual hosts
and switches. In short, Mininet's virtual hosts, switches,
links, and controllers are just like the real thing. They
are just created using software rather than hardware.

Mininet have built-in Controller classes to support
different network controllers such as reference
controller (controller), ovs-controller [12] and less used
NOX Classic [13].

You can choose controller by invoking ‘mn’
command.

mn --controller ref
mn --controller ovsc
mn --controller nox

Five most important open source controllers (Table
I) that can be used by Mininet remotly are POX, Ryu
[14], Trema [15], FloodLight [16], and OpenDaylight
[17]. There are number of other SDN controllers like
NOX (C++) , Jaxon (Java) [18], Beacon (Java) [19],

Maestro (Java) [20] which are not considered because
they are deprecated and poorly documented.

A. POX

The POX is a python based SDN controller that is
inherited from the NOX controller.

B. Ryu

Ryu is a component-based SDN controller. Ryu has
a collection of built-in components. These components
can be changed, extended and composed for creating new
customized controller applications. Any programming
language can be used to develop a new component.

C. Trema

Trema is a framework for Ruby and C that builds
software platform for OpenFlow developers. It is easy
to use Open Source free software.

TABLE 1 DIFFERENT SDN CONTROLLERS

POX | Ryu |Trema|Floodlight| Open Day
Light
Language Python |Python|C Java Java
Support Ruby
OpenFlow v1.0 v1.0 |v1.0 |v1.0 v1.0
Support v12
vl.3
OpenSource |Yes Yes [Yes |[Yes Yes
GUI Yes Yes |No Web GUI |Yes
REST API No Yes |No Yes Yes
Platform Linux Linux |Linux |Linux Linux
Support Mac Mac
Windows Windows

D. Floodlight

The Floodlight Open SDN Controller is an Apache
licensed, enterprise class, Java based OpenFlow
controller. FloodLight controller contains a number of
modules, where each module provides a service to the
other modules and to the control logic application
through simple Java API or a REST APL

E. OpenDayLight

OpenDayLight is an open source project. The goal
of the project is to create robust code that covers major
components of the SDN architecture, to gain acceptance
among the vendors and users, and to have a growing
community that contributes to the code and uses the
code for commercial products.

To use POX controller,
command in terminal window.

type the following

python pox.py log.level -DEBUG

135

International Conference on Communication, Computing & Systems (ICCCS-2014)

Using this command POX controller runs in
DEBUG mode. DEBUG mode allows display of
additional messages exchanged with the switch. To
launch Mininet with default topology of 1 switch and 2
hosts run the following command.

mn

In this case switch will connect to the default ovs
controller. If you want to use POX controller running
on the same Mininet machine you need to run the ‘mn’
command with the controller option having the
parameters set to ‘remote’. Loopback address
‘127.0.0.1° will be used as ip address. The following
command will connect the switches to remote POX
controller running on another terminal.

mn —controller=remote, ip=127.0.0.1

But if POX controller is on different machine
(suppose 172.24.0.1), then run the following command

mn --controller=remote, ip=172.24.0.1

You can create complex pre defined or custom
defined topologies using Mininet. For example

mn -mac --topo single,5 --switch ovsk --
controller remote

This will create 5 hosts and 1 switch topology. The
different options that can be used with ‘mn’ command
are shown in Table II.

TABLE 2 MININET OPTIONS

Commands Description

mn run Mininet

--topo single, 5 | create 1 switch with 5 hosts

--mac makes mac address same as node number on
hosts
--arp install static ARP entries

--switch ovsk | use Open vSwitch

--controller use remote controller
remote
--ip remote controller ip address

III. POX APPLICATIONS

There are various applications that can be created
using POX. The network application could be a simple
hub, switch, and router or could be sophisticated middle
boxes such as firewall or load balancer. This section
contains simple hub logic and application code.

A. Hub Application

If a flow entry in flow table contains action to flood
the packet that arrives at specific port of forwarding
device, then that device act like a hub. In the topology
shown in Fig. 4, all hosts belong to the same network.
When host h1 wants to send a packet to host h4, then it
first sends a packet to forwarding device at port 1.

When a packet arrives at port 1, then it matched against
flow entry. When match is found, then it is flooded to
all ports except the incoming port according to action
specified in flow entry. If no match is found, then
packet is forwarded to controller. In one terminal
window, run the following command to create an
experiment topology.

mn --mac --topo single,5 --switch ovsk --
controller remote

OpenFlow POX
Controller (co)

Port 6633

31
g ! Data Path Controller
= K 3
2 : 127.0.0.1:6633 g (dpet)
8, Qv
S A%
OpenFlow Virtual Switch \, 4
ort | 1 ’
statnl 1" 6D portSE s
,/ |port2 port 3 port 4 N
LA w! w ! \\
SR B & N
hl-eth0 ,/ = = g
R gl 4 v hs-cthd
| I 1
EI
-
IP:1000.1 | 3 1 IP:10.005
MAC:00:00:00:00:00:01 = ! MAC:00:00:00:00:00:05
| 1
| 1
‘5} :ea
Bl 1P:10.0.03 1Z
&l MAC:00:00:00:00:00:03 '
<| l=
1P:10.0.0.2 1P:10.0.0.4
MAC:00:00:00:00:00:02 MAC:00:00:00:00:00:04

Fig. 4 Single Switch, 5 Hosts Topology

from pox.core import core
import pox.openflow.libopenflow 01 as of
from pox.lib.util import dpidToStr

log = core.getLogger()

def _handle_ConnectionUp (event) :
msg = of.ofp flow mod()
msg.actions.append(of.ofp action_output (port =
of .OFPP_FLOOD))
event.connection.send (msg)
log.info("Hubifying %s", dpidToStr(event.dpid))

def launch ():
core.openflow.addListenerByName ("ConnectionUp",
_handle ConnectionUp)

log.info("Hub running.")

Listing 1 Hub Application Code

This will launch Mininet network topology
consisting of 1 OpenFlow switch, 1 OpenFlow controller
and 5 hosts. The POX controller comes pre-installed with
the provided VM image. From another terminal window,
run the hub code (code file name is ‘hub.py’) shown in
Listing 1 by using the following command.

136

Network Programmability Using POX Controller

python pox.py log.level --DEBUG hub

This will launch the POX controller in verbose mode
for debugging purposes and also run the hub application.

B. Understanding Hub Application Code

Before implement a hub application, first you need
to import a core object that show a connection between
modules in POX and OpenFlow library that is used for
access a number of primitives.

1. ofp_action output class: This class specifies a
switch port, where you want to send the
packet. There are various '"special" port
numbers. For example in the hub application,
‘OFPP_FLOOD’ which sends the packet to all

ports except the incoming port.

ofp flow mod OpenFlow message: This
message is send from controller to switch to
insert flow table entry. Flow table entries will
be matched against fields of incoming packets
and then perform some actions on matching
packets.

connection.send(): Controller sends an
OpenFlow message to a switch by using this
function. A ‘ConnectionUp’ event is fired,
When a connection to a switch starts. The
above code call a ‘ handle_ConnectionUp ()’
function that contains hub logic.

launch(): The launch() function is
automatically called, when the application is
started. The application registers all event
listeners in this function.

dpid_to_str(): Each OpenFlow switch has a
unique 64 bit datapath ID (DPID) and that is to
be passed to controller from switch during
handshaking. 48 bits are Ethernet address and
16 bits are implementation defined. It is a
decimal number that is not easy to understand.
POX define a pox.lib.util.dpid to str ()
function to format DPIDs.

IV. VERIFYING HUB BEHAVIOR

To verify hub behavior, Start a topology that
contains single switch and 5 hosts and run it with POX
controller. From host h1 sends icmp packets to the host
h3. Here all the hosts see the same exact traffic which is
the default behavior of hub. Launch an ‘xterm’ for each
host and view the traffic simultaneously for each host
by using ‘tcpdump’ (Fig. 5). For this purpose start 5
xterm terminals, one for each host.

The command for viewing traffic is “tcpdump”. Pass
the option ‘-XX’ for verbose output, ‘-i’ for specifying
the interface for listening, ‘-n’ for no name resolution.

137

'™ Node: h1 {on mininet-vm) - |0 x

rootnininet-mn: 8 tepdump =X = =i hl-ethl
t t werbose outpuL suppreszed, use -u or
we for Full protecol decode

listening on hi-ethd, link-tupe ENOHE (Ethern
ﬁt). capture zize 65535 bytes

T Node: h2 (un mininet-vm) - | O | | %

rogtiimininet=vni“® tepdump =Xk - =1 h2-cthd
topdump: verboss output suppressed, usa —v or
-w for full protocol decode
listening on hZ-ethi, link-tupe ENLOHB (Ether
ﬁet?. capture size 65535 bytes

T Node: N3 (on mininet-vm)/—

rool&mme‘.-w “ lcpd\-v K% n -1 b
tepdungs var output suppraseed, uss -u o
“w for Fult protocol decode
listening on h3-ethd, link-type ENLOHE (Ether

ﬁet!. capture size 65535 butes

T rwlﬂo:mml—v— "8 Lepdump —KK -

~ Node: h4 (UII mininet-’ \"ll

s varbosa output supprasesd. use -v or
—w for full protocel decode
listening on hd-ethl, link-type ENLOHE {Ethern
ﬁt), capture size 69535 bytes

rootimininet=vmi“y topdump =XX =n =1 hS-ethd
te : verbote output suppressed. use -v or

Node: h5 (on mininet-vm)

~w for full protocol decode

uppr
Listening on h5-eth0, link-tupe ENIOHB (Ethernet), capture size 65535 butes

Fig. 5 Tepdump Outputbefore Running 'Ping' Utility

Now from host hl ping to the host h3 at address

10.0.0.3. Ping packets will first go to the controller,
which will then flood the packets to all hosts except the
interface which sent the packet. You will see identical
ICMP and ARP packets related to the ping in all the
terminals. (Fig. 6) thus verifying the behavior of hub.

%[Mode: hz fon mininet-vm)

rootimininet-um: s tcpcmp =M -n =i h-athl
tepeumpt werbose cutput suppressed, use = or = for
Full protocol decode
listening on ho-sthd, Lirk-tupe ENIOME (Etherrst], ca
plare oize BRI byeas
20, 950520 AP, Request whomhas 10,0,0.3 tall 10
U a 1. length 28
Ox0000: FFFF FFFF FEEF 0000 0000 0001 0805 0

HNode: hl {on mininet-vm)
roctimininet-um:"s ping - 2 10.0.0.3
PING 10,0,0,3 (10,0,0,3) EE(84) bytes of data,

64 b-,u.-s from 10,0,0.3; icapreqel tE1sE4 Lines0, 75

=i SILEE

6 hgr.e; from 10,0,0.3; icepreqr2 tt1=64 time=0,102

= 20.0,0,3 ping statistics =-=
3 packets Eransmitied, 2 reeslved, OF packet loss,
e 10028
b mind g max/mdey = 0.100/0, 428/0.755/0.327 ws
roctBaininet-un:d [|

"7 G0010z " 0600 0604 0001 0000 0000 00T MO0 B
" Ba0ia0: 6000 0000 0000 Gad 0003

02154150 0641 AP, Reply 10,0,0.3 Lemat 00100200100
1002 =

length
Ox000T 0000 0000 0001 0000 0000 G003 090G 0 |
W1 wunnnaesrnniians

%/ 1 Node: h4 {on mininet-vm}

root@sininat-vm: 8 teposp <KX -n -1 bd-sthi

Wf“ s varboss output supprestsd, ume v or -w for
.

listenirg o M-ouﬂ, Lirk-tupe ERLOME (Etharret). ca

M aize ot
FRF. Racuest vho-has 10.0.0.3 tall 10

Node: h3 {on mininet-vm)
rwwlmmﬂm 0 topousp =X -0 =1 N3-sthO

Wl suppressad, use v or -w fo
r fuil i'r

ligtaning en hS alm Link-tups ENIOHE (Ethernat), ¢
aptire size butes
0254120, 9605,

=l =I[0)x

36 6P, faamst whorhis 10.0.0.3 tall 1
0,0,0,1, length 28
00303 FEFE FREF FEFF 0000 0000 0001 0506

30604 0001 0000 0000 0001 e
90000 0000 0400 D003
02454 AP, Paply 10,0,0,3 15-at 00:00:00:0

0200263, length 28
D002 0000 D000 DOOL 00K 000 0003 0505

0228420, 950505
00001, lmm-zs

FEFF FFFF FREF 0000 0000 0000 0806 O

O 0604 O0UL 0000 0000 0O0L Qa0 ©

3000 0000 0000 0400 0003

2 (6P, Reply 10,0,0,3 1x-at 00:00300:00
Tength 23
G000 0000 0000 DL 00D 0000 0003 G305 0

roat@nininet=im:“8 topdmp =KX = =i homethid

tepdunp? verbose Gutput suppressed, use —v or -w For full protocol decods

u wurvacn hsexm Lirk= me ENLOWE (Etherrat), :M\Je slae qus
who-has 10,0,0,3 tell 10,0.0

w)om e Tre Eir ot bonho0et. cb06 0og "

Coiidir: (B0 0604 0000 0000 (00l O oL

Fig. 6 Tcpdump Output after Running 'Ping' Utility
V. CONCLUSION

POX controller can be used to convert cheap, dumb
merchant silicon devices into hub, switch, router or
middleboxes such as firewall, load balancer. POX is
also great tool for deploying and testing SDN
applications. Its great strength lies in that it can be used
with real hardware, in testbeds or with Mininet
emulator. The POX controller has some great features
but does not have GUI interface. Open Flow v1.0 is
most widely used version. Open Flow version 1.3 will

International Conference on Communication, Computing & Systems (ICCCS—-2014)

be the next version that is supposed to be widely
implemented in products. POX supports only v1.0. So
support for v1.3 could be future challenge area.
The network applications created in POX controller can
not be used with other controllers. Porting of POX
network applications to other controllers can be another
research area.

ACKNOWLEDGMENT

The authors would like to thank Mr. Vipin Gupta
from U-Net Solutions, Moga, India for his valuable
assistance for this work.

REFERENCES

[17 Nunes, B.; Mendonca, M.; Nguyen, X.; Obraczka, K.; Turletti,
T., "A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks," Communications
Surveys & Tutorials, IEEE , vol.PP, n0.99, pp.1,18.

[2] Fernandez, Marcial. "Evaluating OpenFlow controller
paradigms." In ICN 2013, The Twelfth International Conference
on Networks, pp. 151-157.2013.

[3] Lara, Adrian, Anisha Kolasani, and Byrav Ramamurthy.
"Network innovation using openflow: A survey." (2013): 1-20.

[4] Zhou, Lei, Ligang Dong, and Rong Jin. "Research on ForCES
Configuration Management Based on NETCONF." Information
Technology Journal 13, no. 5 (2014).

[5] Kim, Hyojoon, and Nick Feamster. "Improving network
management with software defined networking."
Communications Magazine, IEEE 51, no. 2 (2013): 114-119.

[6] Lantz, Bob, Brandon Heller, and Nick McKeown. "A network in
a laptop: rapid prototyping for software-defined networks." In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, p. 19. ACM, 2010.

138

(7]
(8]

(9]

[10]

[11

[12
[13

[14

(15
[16

[17
[18]
[19]

[20]

GENI at http://www.geni.net/

VINI at http://www.fp7-federica.eu/pres_eventi/20081014-vini-
bavier.pdf.

M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T.
Stack, K. Webb, and J. Lepreau. Large-scale virtualization in the
emulab network testbed. In USENIX 2008 Annual Technical
Conference, pages 113-128. USENIX, 2008.

Wang, Shie-Yuan, Chih-Liang Chou, and Chun-Ming Yang.
"OpenFlow Controllers over EstiNet Network Simulator and
Emulator: Functional Validation and Performance Evaluation."
Henderson, Thomas R., Mathieu Lacage, George F. Riley, C.
Dowell, and J. B. Kopena. "Network simulations with the ns-3
simulator." SIGCOMM demonstration (2008).

OVS controller at http://yuba.stanford.edu/~casado/of-sw.html.
N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.
McKeown,and S. Shenker. Nox: towards an operating system
for networks. ACM SIGCOMM Computer Commun. Review,
38(3):105-110, 2008.

Shalimov, Alexander, Dmitry Zuikov, Daria Zimarina, Vasily
Pashkov, and Ruslan Smeliansky. "Advanced study of
SDN/OpenFlow controllers." In Proceedings of the 9th Central
& Eastern European Software Engineering Conference in
Russia, p. 1. ACM, 2013.

Trema at https://github.com/trema/trema

Kim, Hyojoon, and Nick Feamster. "Improving network
management with software defined networking."
Communications Magazine, IEEE 51, no. 2 (2013): 114-119.
OpenDayLight at http://www.opendaylight.org/

“Jaxon,” accessed 11-June-2013 at http://jaxon.onuos.org/
Erickson, David. "The beacon openflow controller." In
Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking, pp. 13-18. ACM, 2013.
EugeneNg, ZhengCai AlanL Cox TS. "Maestro: Balancing
Fairness, Latency and Throughput in the OpenFlow Control
Plane."

