
Classification of Software Projects Based on

Software Metrics: A Review

Kunal Chopra1, Monika Sachdeva2 and Sunil Dhawan3

1Department of Computer Science & Engineering,
Shaheed Bhagat Singh State Technical Campus, Firozpur, India

2,3Department of Computer Science,

NIMS University, Jaipur, Rajasthan, India
E-mail: 1kunalraichopra@gmail.com, 2monika.sal@rediffmail.com,

3sunildhawan007@gmail.com

Abstract—Software metrics are developed and used

by the many software organizations for the evaluation and

confirmation of good software code, working and

maintenance of the software product. Software metrics

measure and identify various types of software

complexities such as size metrics, control flow metrics and

data flow metrics. Such observed and calculated software

complexities should be continuously calculated,

understood and controlled. One of the significant objective

of software metrics is that it is applicable to both a process

and product metrics. It is always a clear fact that the high

degree of complexity in modules is bad in comparison to a

low degree of complexity in modules. Metrics can be used

in different phases of the software development lifecycle.

This paper reviews the theory, called “software complexity

metrics for evaluation of software projects”, and analysis

can be done based on various static and dynamic

parameters. We will try to evaluate and analyze various

aspects of software metrics in determining the quality and

improvise the working of the software product

development.

Keywords: Software Metrics, Lines of Code, Control

Flow Metrics, Structural Testing

I. INTRODUCTION

“Metrics don’t solve problem, people solve

problem, Metrics provide information so that people

can solve problems.”[1]

METRICES: Metrics was introduced in the context

of software measurement which has become an

essential tool for the good software engineering. So

Metric can be defined as a quantitative measure of

degree to which a system, component or process

possesses a given attribute. “A handle or guess about a

given attribute” for example “Number of errors found

per person hours expended.”

A. Need and Importance of Software Metrics

Why do we measure???...

Determine the quality of the current product or

process.

Predict qualities of a product/process.

Improve quality of a product/process.

Many of the best software developers measure the

characteristics of the software to get some sense that

whether the requirements are consistent or complete,

whether the design is of high quality whether the code

is ready to be tested. So basically software engineers

measures the attributes of the product so as to estimate

the project will be ready for the delivery or the budget

may perhaps be exceeded. [2]

Measurement is a necessary practice for

understanding, improving and controlling our

environment. It requires rigor and care and though it has

huge impact on software engineering. Measurement

need is directly related to goals we set and question we

ask while developing a software.

Thus Measure can defined as a quantitative

indication of extent, amount, dimension, capacity, or

size of some attribute of a product or process for

example Number of errors in the entire code as it said

that, "When you can measure the product you are

talking numbers that means we can easily count or

express an entity in figures similarly but when we

cannot measure the product or an entity we cannot

express it into numbers our knowledge is unsatisfactory

type it may perhaps be the beginning of the

knowledge.”

B. Need of Measurement in Everyday Life

Measurement is essential in our daily lives and

measuring has become the necessity and well accepted

fact. It exists in the heart of many systems that governs

our lives.

Economic measurements determines price and pay

increases. In Medical sciences measurements help

doctors to diagnose certain illness. Measurements

related to atmospheric systems are the basis for whether

forecasting. Without measurement, technology cannot

operate. Measurement perhaps may not solely the

domain of professional technologists. Everyone of us

uses it in our daily life.

For instance, while making a trip we do measure

distance, selects our route, measure our speed and

predict the time when we arrive at our destination. So

measurement helps us to understand our world, interact

with our surroundings and improve our lives.

C. What is Measurement?

Measurement can be well predicted with a example

in a shop if we compare the price of one commodity

with another. In a garment shop we contrast sizes. And

in case of journey we can compare distance travelled to

Classification of Software Projects Based on Software Metrics: A Review

119

distance remained. So we can make the calculations and

predictions accurate according to well defined set of

rules. [3]

So measurement may be defined as the process by

which the symbols and numbers are assigned to attributes

of entities in the real world in such a way so as to

describe them according to clearly defined set of rules.

The measurement provides information about

attributes of entities. An entity can be an object or an

event in real world. So an entity can be well descrived

by identifying characteristics that are important to us in

distinguishing one entity from another. An attribute is

the feature or property of entity.

So when we describe these entities by using their

attributes, we define those attributes by using numbers

and symbols. Thus the price is designated as the rupees

or dollars sterling, while height is defined in terms of

inches and feet. Those numbers and symbols are

abstractions that we usually use to reflect people’s

perception in the real world.

Thus measurement can be determined as the

process whose definition is not accurate. To understand

what measurement is we may have to ask host of

questions which may difficult to answer.

1. Height of a person is commonly known attribute

that can be measured. But other attributes of

people, such as intelligence creates a fuss.

2. Height is commonly measured in terms of meters,

inches and feet. These different scales measure the

same attribute. But we can also measure height in

terms of miles and more appropriate for the

measurement of distance of satellite above earth

but not for the measurement of the height of the

person which again makes measurement definition

far from accurate.

3. The accuracy of the measurement depends upon

the measuring instrument and the definition of the

measurement. For example length can measured

with accuracy as long as the ruler is accurate and

used in proper way.

4. Once we attain measurements for different aspects

of real world, we need to analyze them and define

conclusions about the entities from which they

were derived. It also requires that what sort of

changes or manipulations can we apply for the

results of measurement? For example why it is

acceptable to say that Joe is twice as tall as Fred

but not acceptable to say that it is twice as hot

today as it was yesterday?

D. Making things Measurable

“What is not measurable, make it measurable.”

The above stanza suggests that one of the aims of

science is to find ways to measure attributes of the

things in which we are interested. Measurement makes

concepts more clear and therefore more understandable

and controllable. Thus, as scientists, we should find out

ways to measure world; where we can already measure,

we can make our measurement better.

To improve the implementation of measurement in

software engineering, we need not to restrict type of

measurements we make. Really measuring the

un-measurable should improve our understanding of

particular entities and attributes, and making software

engineering as powerful as other engineering

disciplines.

Strictly speaking, there are two kind of

quantification: measurement and calculation.

Measurement is termed as direct quantification, as

in the measurement of the height of a tree or the weight

of a shipment of bricks. On the other hand calculation is

indirect quantification, where we take measurements

and combine them into a quantified item that describe

the attribute whose value is to be determined.

For instance, when a city inspectors assign a

valuation to a house, they calculate it by using certain

formula that combines variety of factors which includes

number of rooms, the overall floor space and the type of

heating and cooling. Thu the valuation is termed to be

quantification, not a measurement, and it expression as

a number makes it more useful than qualitative

assessment alone.

So eventually, it is necessary to modify our

surrounding or our practices in order to measure

something new or in an innovative way. It can be

achieved by using a new tool, adding a new steps in a

process, or using a new method. In many cases, change

is difficult for people to accept, there are management

issues to be considered whenever a management

program is implemented or changed.

E. Measurement in Software Engineering

We have seen the importance of measurement in

our daily life, measurement has become an essential and

well accepted attribute of life. In this section, we will

see instances of software engineering to see why

measurement is needed.

Software Engineering briefs the collection of

techniques that apply an engineering approach to the

construction and maintenance of software products. It

includes activities like managing, costing, planning,

modeling, analyzing, specifying, implementing, testing

and maintaining.

In engineering we try to impend each activity to be

well understood and maintained so that there are fewer

surprises as the software is designed, specified, built

and maintained. On the another hand computer science

gives the theoretical foundations for building software,

software engineering focuses on implementing the

software in a controlled and specific manner.

The significance of software engineering cannot be

understood, since software pervades our lives. From

International Conference on Communication, Computing & Systems (ICCCS–2014)

120

banking transactions to air traffic control, from oven

controls to air bags,, and sophisticated power plants to

sophisticated weapons, our life and quality of life

depends upon software.

In software engineering we use various software

models and theories for example in making an electrical

circuit we appeal to theories like Ohms Law which

gives the relation between resistance, current and

voltage in the circuit. Once the scientific method

suggests the validity of the subject concern, the

measurement or the truth of the story, we continue to

use measurement to apply the theory to practice. Thus

to build a circuit with a specific current and resistance,

we know what voltage is required and we use

instruments to measure that we have such voltage in the

given battery.

It is difficult to predict the mechanical, electrical

and civil engineering without a central for

measurement. Indeed science and engineering can

neither be effective nor practical without measurement.

But measurement in software engineering has been

considered a luxury. For most development projects:

1. Gilbs principle of Fuzzy Targets: projects without

clear goals will not achieve their goals clearly. For

example we promise to make a reliable, user-

friendly and maintainable without specifying

clearly and objectively what these terms mean.

2. We do not quantify or predict the quality of

products we produce. Thus we cannot tell a

potential user how reliable the product will be in

terms of likelihood of failure in a given period of

use, or how much work will be needed to port the

product to a different machine environment.

Since measurements are made they are often done

inconsistently, infrequently, inconsistently and

incompletely. The incompleteness can be frustrating to

those who really want to use the results. For instance, a

developer may claim that 80% of all software costs

involve maintenance, or that there on average 55 faults

in every 1000 lines of software code. But we are not

always told how these results were obtained, how

experiments were designed and executed, which entities

were measured and how, and what were realistic error

margins. Without this additional information, we

remain skeptical and unable to decide whether to apply

results to our own situations. [4]

The Software complexity is based on well-known

software metrics, this would be likely to reduce the time

spent and cost estimation in the testing phase of the

software development life cycle (SDLC), which can

only be used after program coding is done. Improving

quality of software is quantitative measure of the

quality of source code.

This can be achieved through definition of metrics,

values can be calculated by analyzing source code or

program is coded. A number of software metrics widely

used in the software industry are still not well

understood.

Although some software complexity measures were

proposed over thirty years ago and some others

proposed later. Sometimes software growth is usually

considered in terms of complexity of source code.

Various metrics are used, which unable to compare

approaches and results. In addition, it is not possible or

equally easy to evaluate for a given source code.

Software complexity, deals with how difficult a

program is to comprehend and work with Software

maintainability, is the degree to which characteristics

that hamper software maintenance are present and

determined by software complexity.

II. THE SCOPE OF SOFTWARE METRICS

Software metrics include many activities that may

include some sort of measurement. It may help in

determining various activities like:

1. Structural and complexity metrics.

2. Management by metrics.

3. Evaluation of methods and tools.

4. Cost and effort estimation.

5. Productivity measures and models.

6. Data collection.

7. Reliability models.

8. Quality modals and measures.

9. Performance evaluation and models.

A. Why do We Need to Classify

From software engineering point of view software

development experience shows, that it is difficult to set

measurable targets when developing software products.

Produced/developed software has to be testable,

reliable and maintainable. On the other side, “You

cannot control what you cannot measure”. [5]

In software engineering field during software

process, developers do not know if what they are

developing is correct and guidance are needed to help

them accustom more improvement. Software metrics

are facilitating to track software enhancement. Various

industries dedicated to develop software, and use

software metrics in a regular basis. Some of them have

produced their own standards of software measurement,

so the use of software metrics is totally depending upon

industry to industry. In this regards, what to measure is

classified into two categories, such that software

process or software product.

But ultimately, main goal of this measure is

customer satisfaction not only at delivery, but through

the whole development process. [6]

Various software metrics have been discovered and

proposed by the researchers if we take a glimpse of the

history of software metrics. The software metrics range

through size, design and complexities proposed by

Classification of Software Projects Based on Software Metrics: A Review

121

McCabb (1976), Helstead (1977), Lorenz (1993) and

Chidamber and Kermer (1994) were chosen for the

improvisation in design and development of the

software projects. The discovered metrics domains were

non OO and OO designing in software engineering

which were implemented empirically onto various

software projects so as to increase the productivity and

quality of the project.

Huge budget is being spent in the maintenance and

improving the quality of software projects based on the

criteria set by the proposed metrics. But this mechanism

is somewhat not good in essence that these approaches

are implemented during the maintenance phase or rarely

at the design phase. This can be prevented if we classify

our software projects in accordance with the software

metrics.

Based on non-OO and OO design metrics we can

broadly classify our software projects in the following

category:

a. Size based projects.

b. Design oriented projects.

c. Approach based projects.

d. Program weakness.

e. Failures.

f. Functionality.

g. Complexity.

h. Dependency.

III. TYPES OF SOTWARE METRICS

As we have discussed earlier that first obligation of

any software measurement activity is identifying the

attributes and entities we wish to measure. In software

there two such classes:

Processes Metrics are collection of software

related activities.

Products Metrics documents or deliverables that

result from a process activity.

A. Software Process Metrics

Software process metrics involves measuring of

properties of the development process and also known

as management metrics. These metrics include the cost,

effort, reuse, methodology, and advancement metrics.

Also determine the size, time and number of errors

found during testing phase of the SDLC.

B. Software Product Metrics

Software process metrics involves measuring the

properties of the software and also known as quality

metrics. These metrics include the reliability, usability,

functionality, performance, efficacy, portability,

reusability, cost, size, complexity, and style metrics.

These metrics measure the complexity of the software

design, size or documentation created.

C. Size Metrics: Lines of Code

Certain size metrics were proposed for measuring

the software like LOC(Lines of Code), KLOC

(1000 Lines of Code), SLOC(Statement Lines of Code).

Lines of code is actually count of instruction

statements. It’s count is usually for executable

statements. [7] Since the LOC count gives the program

size and complexity, it is not a surprise that the more

lines of code there are in a program, the more defects

are expected. More surprisingly, researchers found that

defect density(defects per KLOC) is also significantly

related to LOC count. Previous studies pointed to a

negative relationship: the larger the module size, the

smaller the defect rate. For example, Basili and

Perricone (1984) examined FORTRAN modules with

fewer than 200 lines of code for the most part and found

higher defect density in the smaller modules. Shen and

colleagues (1985) studied software written in Pascal,

PL/S and Assembly language and found an inverse

relationship existed upto about 500 lines. Since larger

modules are generally more complex, a lower defect

rate is somewhat counterintuitive.

D. Halstead Complexity Metric (1977)

It distinguishes software science from computer

science. According to computer science a computer

program is a collection of tokens that can be classified

as either operators of operands. [9] The primitive

measures of Halstead’s software science are:

n1 = Number of distinct operators in a program

n2 = Number of distinct operands in a program

N1 = Number of operator occurrences

N2 = Number of operand occurrences

Given the attribute measures based on that,

Halstead developed a system of equations which

expresses the overall program length, the potential

minimum volume for an algorithm, total vocabulary,

the, the actual volume(the number of bits required to

specify a program), the program level (a measure of

software complexity), program difficulty, and other

features such as development effort and projected

number of faults in the software. Halstead major

equations include the following:

a. Program Length (N) = N1+N2

b. Program Vocabulary (n) = n1+n2

c. Volume of a Program (V) = N*log2n

d. Potential Volume of a Program

(V*)=(2+n2)log2(2+n2)

e. Program Level (L) = L=V*/V

f. Program Difficulty (D) = 1/L
g. Estimated Program Length (N) =

n1log2n1+n2log2n2

h. Estimated Program Level (L) = 2n2/(n1N2)

i. Estimated Difficulty (D) = 1/L = n1N2/2n2

International Conference on Communication, Computing & Systems (ICCCS–2014)

122

j. Effort (E) = V/L = V*D = (n1 x N2) / 2n2

k. Time (T) = E/S

[“S” is Stroud number (given by John Stroud), the

constant “S” represents the speed of a programmer. The

value “S” is 18]

One major weakness of this complexity is that they

do notmeasure control flow complexity and difficult to

compute during fast and easy computation.

E. McCabe Cyclomatic Complexity by (1976)

It was designed to indicate a programs testability

and understandability. It is the classical graph theory

cyclomatic number, indicating the number of regions in

the graph. As applied to the software, it is the number

of linearly independent paths that comprise the

program. The M is equal to the number of binary

decisions plus 1. [8]

If all the decisions are not binary, a three way

decision can be counted as two binary decisions and

n-way case statement is counted as n-1 binary

decisions. The cyclomatic complexity metric is

additive. The complexities of several graphs considered

as a group is equal to the sum of individual graphs

complexities. The general formula to compute the

cyclomatic complexity is:

M= V(G) = e – n + 2p where.

V(G) = Cyclomatic number of G.

e = Number of edges.

n = Number of nodes.

p = Number of unconnected parts of the graph.

We can compute the number of binary node

(predicate), by the following equation.

V (G)= p+1

where, V(G)= Cyclomatic Complexity

P= number of nodes or predicates.

The problem with McCabb’s Complexity is that, it

fails to distinguish between different conditional

statements (control flow structures). Also does not

consider nesting level ofvarious control flow structures.

F. Design Metrics

In 1994 Chidamber and Kermer proposed six OO

design and complexity metrics, which became the

commonly referred to CK metric suite:

1. Weighted Method per Class (WMC): WMC is the

sum of the complexities of the methods, whereas

complexity is measured by cyclomatic complexity.

If one consider all the methods of a class to be of

equal complexity, then WMC is simply the

number of methods defined in each class. And the

average of WMC is the average number of

methods per class. [10]

2. Depth of Inheritance tree (DIT): This is the length

of the maximum path of class hierarchy from the

node to the root of the inheritance tree. [10]

3. Number of Children of Class (NOC): This is the

number of immediate successors (subclasses) of

class in a hierarchy.[10]

4. Coupling between object classes (CBO): An

object class is coupled with another one if it

invokes another one’s member functions or

instance variables. CBO is the number of classes

to which a given class is coupled. [10]

5. Response for Class (RFC): This is the number of

methods that can be executed in response to a

message received by an object of that class. The

larger the number of methods that can be invoked

from a class through messages, the greater the

complexity of the class. It captures the size of the

response set of a class. The response set of a class

is all the methods called by the local methods.

RFC is the number of local methods plus

the number of methods called by the local

methods. [10]

6. Lack of Cohesion on Methods (LCOM): The

cohesion of a class is indicated by how closely the

local methods are related to the local instance

variables in the class. High cohesion indicates

good class subdivision. The LCOM metric

measures the dissimilarity of methods in a class by

the usage instance variables. LCOM is measured

as the number of disjoint sets of local methods.

Lack of cohesion increases complexity and

opportunities for error during the development

process. [10]

IV. CONCLUSION

Software metric are used in analyzing and

maintaining the quality of the software development

process and it is one of the most important process

associated with SDLC. We can use the metrics to

analyze various factors that impact the design and then

the performance of the software product. Thus the

metrics we have reviewed become an integral part of

the process known as software development. The

deployment of the metrics are indeed a very big task

and it provides a vast array of opportunities for the

programmers to refer this as a document for referencing

for classifying metrics.

REFERENCES

[1] Singh Yogesh & Pradeep Bhatia, “ Module Weakness—A New

Measure”, ACM SIGSOFT Software Engineering

Notes,81,July,1998.

Classification of Software Projects Based on Software Metrics: A Review

123

[2] Norman E. Fenton & Shari Lawrence Pfleeger “Software

Metrics A Rigorous and Practical Approach “ PWS Publishing

Company, 2-1, 1997.

[3] Martin Neh, “ Software Metrics for Product Assessment”,

McGraw Hill Book Co., UK, 2003.

[4] Henry S. & Kafura D., “Software Structure Metrics Based on

Information Flow”, IEEE Trans. On Software Engineering SE-7,

5, 510-518, Sept. 1981.

[5] Paul Goodman, “ Practical Implementation of Software

Metrics”, McGraw Hill Book Co., UK, 1993.

[6] Halstead M.H., “Elements of Software Science”, New York,

Elsevier North Holland, 1977.

[7] Mrinal Kanti Debbarma, Swapan Debbarma, Nikhil Debbarma,

Kunal Chakma, and Anupam Jamatia, “A Review and Analysis

of Software Complexity Metrics inStructural Testing,

March 2013.

[8] Dhawan Sunil, Wadhwa Manoj, Identification of Software

Metrics for Software Projects, IJACEN, 23-27,2013.

[9] Stephen H. Kan, “Metrics and Models In Software Quality

Engineering”, Second Edition Pearson, 2-82 2002.

[10] Shyam R. Chidamber and Chris F. Kermer, “A Metrics Suite

For Object Oriented Design”, June 1994.

